-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path9_47.py
116 lines (83 loc) · 2.18 KB
/
9_47.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# This is a Modified version of Nikolai Tschacher's code
# https://github.com/NikolaiT
# https://github.com/NikolaiT/Large-Primes-for-RSA/blob/master/generate_primes.py
from timeit import default_timer as timer
import random
#INDEPENDENT
def fermat_primality_test(p, s=5):
if p == 2:
return True
if not p & 1: # if p is even, number cant be a prime
return False
for i in range(s):
a = random.randrange(2, p-2)
x = pow(a, p-1, p) # a**(p-1) % p
if x != 1:
return False
return True
#INDEPENDENT
def square_and_multiply(x, k, p=None):
b = bin(k).lstrip('0b')
r = 1
for i in b:
r = r**2
if i == '1':
r = r * x
if p:
r %= p
return r
#SUBFUNCTION witness.
def miller_rabin_primality_test(p, s=5):
if p == 2:
return True
if not (p & 1):
return False
p1 = p - 1
u = 0
r = p1
while r % 2 == 0:
r >>= 1
u += 1
assert p-1 == 2**u * r
def witness(a):
"""
Returns: True, if there is a witness that p is not prime.
False, when p might be prime
"""
z = square_and_multiply(a, r, p)
if z == 1:
return False
for i in range(u):
z = square_and_multiply(a, 2**i * r, p)
if z == p1:
return False
return True
for j in range(s):
a = random.randrange(2, p-2)
if witness(a):
return False
return True
def generate_primes(n=512, k=1):
assert k > 0
assert n > 0 and n < 4096
x = random.getrandbits(n)
primes = []
while k>0:
if miller_rabin_primality_test(x, s=7):
primes.append(x)
k = k-1
x = x+1
return primes
if __name__ == '__main__':
start = timer()
n = 1024
primes = generate_primes(n=n)
print(primes[0])
while not miller_rabin_primality_test(2*primes[0]+1,4):
primes = generate_primes(n)
print(primes[0])
print("final result:")
print("p: ", primes[0])
print("q=2p+1: ", 2*primes[0]+1)
end = timer()
print("Time elapsed in sec: ", end - start)