forked from pytorch/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_python_examples.sh
executable file
·229 lines (202 loc) · 6.63 KB
/
run_python_examples.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env bash
#
# This script runs through the code in each of the python examples.
# The purpose is just as an integration test, not to actually train models in any meaningful way.
# For that reason, most of these set epochs = 1 and --dry-run.
#
# Optionally specify a comma separated list of examples to run.
# can be run as:
# ./run_python_examples.sh "install_deps,run_all,clean"
# to pip install dependencies (other than pytorch), run all examples, and remove temporary/changed data files.
# Expects pytorch, torchvision to be installed.
BASE_DIR=`pwd`"/"`dirname $0`
EXAMPLES=`echo $1 | sed -e 's/ //g'`
USE_CUDA=$(python -c "import torchvision, torch; print(torch.cuda.is_available())")
case $USE_CUDA in
"True")
echo "using cuda"
CUDA=1
CUDA_FLAG="--cuda"
;;
"False")
echo "not using cuda"
CUDA=0
CUDA_FLAG=""
;;
"")
exit 1;
;;
esac
ERRORS=""
function error() {
ERR=$1
ERRORS="$ERRORS\n$ERR"
echo $ERR
}
function install_deps() {
echo "installing requirements"
cat $BASE_DIR/*/requirements.txt | \
sort -u | \
# testing the installed version of torch, so don't pip install it.
grep -vE '^torch$' | \
pip install -r /dev/stdin || \
{ error "failed to install dependencies"; exit 1; }
}
function start() {
EXAMPLE=${FUNCNAME[1]}
cd $BASE_DIR/$EXAMPLE
echo "Running example: $EXAMPLE"
}
function dcgan() {
start
if [ ! -d "lsun" ]; then
echo "cloning repo to get lsun dataset"
git clone https://github.com/fyu/lsun || { error "couldn't clone lsun repo needed for dcgan"; return; }
fi
# 'classroom' much smaller than the default 'bedroom' dataset.
DATACLASS="classroom"
if [ ! -d "lsun/${DATACLASS}_train_lmdb" ]; then
pushd lsun
python download.py -c $DATACLASS || { error "couldn't download $DATACLASS for dcgan"; return; }
unzip ${DATACLASS}_train_lmdb.zip || { error "couldn't unzip $DATACLASS"; return; }
popd
fi
python main.py --dataset lsun --dataroot lsun --classes $DATACLASS --niter 1 $CUDA_FLAG --dry-run || error "dcgan failed"
}
function fast_neural_style() {
start
if [ ! -d "saved_models" ]; then
echo "downloading saved models for fast neural style"
python download_saved_models.py
fi
test -d "saved_models" || { error "saved models not found"; return; }
echo "running fast neural style model"
python neural_style/neural_style.py eval --content-image images/content-images/amber.jpg --model saved_models/candy.pth --output-image images/output-images/amber-candy.jpg --cuda $CUDA || error "neural_style.py failed"
}
function imagenet() {
start
if [[ ! -d "sample/val" || ! -d "sample/train" ]]; then
mkdir -p sample/val/n
mkdir -p sample/train/n
wget "https://upload.wikimedia.org/wikipedia/commons/5/5a/Socks-clinton.jpg" || { error "couldn't download sample image for imagenet"; return; }
mv Socks-clinton.jpg sample/train/n
cp sample/train/n/* sample/val/n/
fi
python main.py --epochs 1 sample/ || error "imagenet example failed"
}
function mnist() {
start
python main.py --epochs 1 --dry-run || error "mnist example failed"
}
function mnist_hogwild() {
start
python main.py --epochs 1 --dry-run $CUDA_FLAG || error "mnist hogwild failed"
}
function regression() {
start
python main.py --epochs 1 $CUDA_FLAG || error "regression failed"
}
function siamese_network() {
start
python main.py --epochs 1 --dry-run || error "siamese network example failed"
}
function reinforcement_learning() {
start
python reinforce.py || error "reinforcement learning reinforce failed"
python actor_critic.py || error "reinforcement learning actor_critic failed"
}
function snli() {
start
echo "installing 'en' model if not installed"
python -m spacy download en || { error "couldn't download 'en' model needed for snli"; return; }
echo "training..."
python train.py --epochs 1 --dev_every 1 --no-bidirectional --dry-run || error "couldn't train snli"
}
function fx() {
start
# python custom_tracer.py || error "fx custom tracer has failed" UnboundLocalError: local variable 'tabulate' referenced before assignment
python invert.py || error "fx invert has failed"
python module_tracer.py || error "fx module tracer has failed"
python primitive_library.py || error "fx primitive library has failed"
python profiling_tracer.py || error "fx profiling tracer has failed"
python replace_op.py || error "fx replace op has failed"
python subgraph_rewriter_basic_use.py || error "fx subgraph has failed"
python wrap_output_dynamically.py || error "vmap output dynamically has failed"
}
function super_resolution() {
start
python main.py --upscale_factor 3 --batchSize 4 --testBatchSize 100 --nEpochs 1 --lr 0.001 || error "super resolution failed"
}
function time_sequence_prediction() {
start
python generate_sine_wave.py || { error "generate sine wave failed"; return; }
python train.py --steps 2 || error "time sequence prediction training failed"
}
function vae() {
start
python main.py --epochs 1 || error "vae failed"
}
function word_language_model() {
start
python main.py --epochs 1 --dry-run $CUDA_FLAG || error "word_language_model failed"
}
function clean() {
cd $BASE_DIR
echo "running clean to remove cruft"
rm -rf dcgan/_cache_lsun_classroom_train_lmdb \
dcgan/fake_samples_epoch_000.png dcgan/lsun/ \
dcgan/_cache_lsunclassroomtrainlmdb \
dcgan/netD_epoch_0.pth dcgan/netG_epoch_0.pth \
dcgan/real_samples.png \
fast_neural_style/saved_models.zip \
fast_neural_style/saved_models/ \
imagenet/checkpoint.pth.tar \
imagenet/lsun/ \
imagenet/model_best.pth.tar \
imagenet/sample/ \
snli/.data/ \
snli/.vector_cache/ \
snli/results/ \
super_resolution/dataset/ \
super_resolution/model_epoch_1.pth \
time_sequence_prediction/predict*.pdf \
time_sequence_prediction/traindata.pt \
word_language_model/model.pt || error "couldn't clean up some files"
git checkout fast_neural_style/images/output-images/amber-candy.jpg || error "couldn't clean up fast neural style image"
}
function run_all() {
# cpp
dcgan
# distributed
fast_neural_style
imagenet
mnist
mnist_hogwild
regression
reinforcement_learning
siamese_network
super_resolution
time_sequence_prediction
vae
word_language_model
fx
}
# by default, run all examples
if [ "" == "$EXAMPLES" ]; then
run_all
else
for i in $(echo $EXAMPLES | sed "s/,/ /g")
do
echo "Starting $i"
$i
echo "Finished $i, status $?"
done
fi
if [ "" == "$ERRORS" ]; then
echo "Completed successfully with status $?"
else
echo "Some examples failed:"
printf "$ERRORS"
#Exit with error (0-255) in case of failure in one of the tests.
exit 1
fi