-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_enc.py
309 lines (274 loc) · 14 KB
/
train_enc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#! /usr/bin/env python
# coding: utf-8
"""
Train models using the encoded texts.
"""
import numpy as np
import pandas as pd
import os
import pickle
import time
import math
import yaml
import datetime
import tensorflow as tf
from tensorflow.contrib import learn
from sklearn.model_selection import KFold
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
import data_helpers
import synonyms_encode
from text_cnn import TextCNN
from text_rnn import TextRNN
from text_birnn import TextBiRNN
import encode_utils
# Parameters
# ==================================================
# Data loading params
tf.flags.DEFINE_string("model_type", "clf", "The type of model, classification or regression (default: clf)") # clf/reg
tf.flags.DEFINE_string("nn_type", "textrnn", "The type of neural network type (default: textcnn)") # fasttext/textdnn/textcnn/textrnn/textbirnn/textrcnn/texthan
tf.flags.DEFINE_string("data", "aclImdb", "The type of data (aclImdb, yahoo_answers, ag_news)")
tf.flags.DEFINE_float("sn", 10, "The number of the synonyms that use the same code, default to 5")
tf.flags.DEFINE_string("gpu", "0", "gpu to use")
tf.flags.DEFINE_string("sigma", "1.0", "sigma to use")
tf.flags.DEFINE_string("language_type", "en", "Text language type (default: en)") # en/zh
tf.flags.DEFINE_float("dev_sample_percentage", .1, "Percentage of the training data to use for validation")
tf.flags.DEFINE_float("cross_val_folds", 10, "Split the training data to validation with k folds")
# Model Hyperparameters
tf.flags.DEFINE_boolean("enable_word_embeddings", True, "Enable/disable the word embedding (default: True)")
tf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_integer("hidden_size", 128, "Number of hidden layer units (default: 128)")
tf.flags.DEFINE_integer("hidden_layers", 2, "Number of hidden layers (default: 2)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_integer("rnn_size", 128, "Number of units rnn_size (default: 128)")
tf.flags.DEFINE_integer("num_rnn_layers", 3, "Number of rnn layers (default: 3)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)")
# Training parameters
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 5, "Number of training epochs (default: 15)")
tf.flags.DEFINE_integer("evaluate_every", 200, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 200, "Save model after this many steps (default: 100)")
tf.flags.DEFINE_integer("num_checkpoints", 2, "Number of checkpoints to store (default: 5)")
tf.flags.DEFINE_float("grad_clip", 5, "grad clip to prevent gradient explode")
tf.flags.DEFINE_float("decay_coefficient", 2.5, "Decay coefficient (default: 2.5)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
IMDB_PATH = 'aclImdb'
MAX_VOCAB_SIZE = 50000
GLOVE_PATH = 'glove.840B.300d.txt'
def preprocess(path):
"""
Get the data for train and test.
Args:
path: the path for the dictionary, tokenizer and embedding matrix.
Returns:
pass
"""
"""Load the dictionary and the tokenizer."""
with open(('aux_files/enc_dic_%s_%d_%d_%s.pkl' % (FLAGS.data, MAX_VOCAB_SIZE, FLAGS.sn, FLAGS.sigma)), 'rb') as f:
enc_dic = pickle.load(f)
with open(('aux_files/tokenizer_%s_%d.pkl' % (FLAGS.data, MAX_VOCAB_SIZE)), 'rb') as f:
tokenizer = pickle.load(f)
"""We only use the original sequence `train_seq` and `test_seq`"""
train_seq, train_seq_o, train_labels = encode_utils.text_encode(tokenizer, enc_dic, FLAGS.data+'/train', MAX_VOCAB_SIZE)
test_seq, test_seq_o, test_labels = encode_utils.text_encode(tokenizer, enc_dic, FLAGS.data+'/test', MAX_VOCAB_SIZE)
"""Load the embedding matrix, and pad sequence to the same length"""
embedding_matrix = np.load(('aux_files/embeddings_glove_%s_%d.npy' %(FLAGS.data, MAX_VOCAB_SIZE)))
max_len = 250
x_train = pad_sequences(train_seq, maxlen=max_len, padding='post')
y_train = np.array(train_labels)
x_test = pad_sequences(test_seq, maxlen=max_len, padding='post')
y_test = np.array(test_labels)
# Get the totoal number of words encoded.
encode_length = 1
for key in enc_dic:
encode_length = max(encode_length, enc_dic[key])
encode_length += 1
return x_train, y_train, x_test, y_test, embedding_matrix, encode_length
# Training
# ==================================================
os.environ["CUDA_VISIBLE_DEVICES"]=FLAGS.gpu
def train(x_train, y_train, x_dev, y_dev, embedding_matrix, vocab_encoded_length, num_classes=2):
batch_size = 64
lstm_size = 128
num_epochs = 20
max_len = 250
with tf.Graph().as_default():
session_conf = tf.GPUOptions(allow_growth=True)
# session_conf = tf.ConfigProto(
# allow_soft_placement=FLAGS.allow_soft_placement,
# log_device_placement=FLAGS.log_device_placement)
# session_conf.gpu_options.per_process_gpu_memory_fraction = 0.4
sess = tf.Session(config=tf.ConfigProto(gpu_options=session_conf))
with sess.as_default():
# Get different model according to different value of `nn_type`.
if FLAGS.nn_type == 'textcnn':
nn = TextCNN(
sequence_length=max_len,
num_classes=num_classes,
vocab_size=vocab_encoded_length,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda)
elif FLAGS.nn_type == 'textrnn':
nn = TextRNN(
sequence_length=max_len,
num_classes=num_classes,
vocab_size=vocab_encoded_length,
rnn_size=FLAGS.rnn_size,
num_layers=FLAGS.num_rnn_layers,
# batch_size=FLAGS.batch_size,
l2_reg_lambda=FLAGS.l2_reg_lambda)
elif FLAGS.nn_type == 'textbirnn':
nn = TextBiRNN(
sequence_length=max_len,
num_classes=num_classes,
vocab_size=vocab_encoded_length,
rnn_size=FLAGS.rnn_size,
num_layers=FLAGS.num_rnn_layers,
# batch_size=FLAGS.batch_size,
l2_reg_lambda=FLAGS.l2_reg_lambda)
elif FLAGS.nn_type == 'textrcnn':
nn = TextRCNN(
sequence_length=max_len,
num_classes=num_classes,
vocab_size=vocab_encoded_length,
batch_size=FLAGS.batch_size,
l2_reg_lambda=FLAGS.l2_reg_lambda)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(nn.learning_rate)
# Clip the gradient to avoid larger ones
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(nn.loss, tvars), FLAGS.grad_clip)
# grads_and_vars = optimizer.compute_gradients(nn.loss)
grads_and_vars = tuple(zip(grads, tvars))
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs_enc_%s" % FLAGS.nn_type, timestamp))
print("Writing to {}\n".format(out_dir))
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
# Initialize all variables
sess.run(tf.global_variables_initializer())
# sess.run(tf.assign(nn.W, embedding_matrix.T))
print('Training..')
def train_step(x_batch, y_batch, learning_rate):
"""
A single training step
"""
feed_dict = {
nn.input_x: x_batch,
nn.input_y: y_batch,
nn.dropout_keep_prob: 0.8,
nn.learning_rate: learning_rate
}
_, step, loss, accuracy = sess.run(
[train_op, global_step, nn.loss, nn.accuracy], feed_dict)
time_str = datetime.datetime.now().isoformat()
if step % 100 == 0:
print("{}: step {}, lr {:g}, loss {:g}, acc {:g}".format(time_str, step, learning_rate, loss, accuracy))
def dev_step(x_batch, y_batch):
"""
Evaluates model on a dev set
"""
if FLAGS.nn_type in ['textcnn','textrnn', 'textbirnn']:
feed_dict = {
nn.input_x: x_batch,
nn.input_y: y_batch,
nn.dropout_keep_prob: 1.0
}
step, loss, accuracy = sess.run(
[global_step, nn.loss, nn.accuracy], feed_dict)
elif FLAGS.nn_type in ['textrcnn']:
loss_sum = 0
accuracy_sum = 0
step = None
batches_in_dev = len(y_batch) // FLAGS.batch_size
for batch in range(batches_in_dev):
start_index = batch * FLAGS.batch_size
end_index = (batch + 1) * FLAGS.batch_size
feed_dict = {
nn.input_x: x_batch[start_index:end_index],
nn.input_y: y_batch[start_index:end_index],
nn.dropout_keep_prob: 1.0
}
step, loss, accuracy = sess.run(
[global_step, nn.loss, nn.accuracy],feed_dict)
loss_sum += loss
accuracy_sum += accuracy
loss = loss_sum / batches_in_dev
accuracy = accuracy_sum / batches_in_dev
time_str = datetime.datetime.now().isoformat()
return step, loss, accuracy
# Generate batches
batches = data_helpers.batch_iter(
list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
# It uses dynamic learning rate with a high value at the beginning to speed up the training
max_learning_rate = 0.005
min_learning_rate = 0.0001
decay_speed = FLAGS.decay_coefficient*len(y_train)/FLAGS.batch_size
# Training loop. For each batch...
counter = 0
best_eval_accuracy = 0
last_val, curr_val = 0, 0
acc_all = []
for batch in batches:
learning_rate = min_learning_rate + (max_learning_rate - min_learning_rate) * math.exp(-counter/decay_speed)
counter += 1
x_batch, y_batch = zip(*batch)
train_step(x_batch, y_batch, learning_rate)
batches_dev = data_helpers.batch_iter(list(zip(x_dev, y_dev)), FLAGS.batch_size*3, 1)
time_str = datetime.datetime.now().isoformat()
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
print("Evaluation:")
loss_all, accuracy_all = [], []
for batch_dev in batches_dev:
x_batch_dev, y_batch_dev = zip(*batch_dev)
step, loss, accuracy = dev_step(x_batch_dev, y_batch_dev)
loss_all.append(loss)
accuracy_all.append(accuracy)
accuracy_mean = np.mean(accuracy_all)
acc_all.append(accuracy_mean)
print("Evaluation: {}: step {}, loss {:g}, best acc {:g}, acc {:g}".format(time_str, step, np.mean(loss_all), best_eval_accuracy, accuracy_mean))
if accuracy_mean > best_eval_accuracy and step > 300:
last_val = best_eval_accuracy
best_eval_accuracy = accuracy_mean
if(best_eval_accuracy == last_val):
best_remain += 1
if best_remain == 10:
print(best_eval_accuracy)
break
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
print(np.mean(acc_all[-4:]))
def main(argv=None):
path = FLAGS.data
train_x, train_y, test_x, test_y, embedding_matrix, vocab_encoded_length = preprocess(path)
if path == 'aclImdb':
print('\nData: aclImdb!!!\n')
num_classes = 2
elif path == 'yahoo_answers':
print('\nData: yahoo_answers!!!\n')
num_classes = 10
elif path == 'yelp':
print('\nData: yelp!!!\n')
num_classes = 2
elif path == 'yelp_full':
print('\nData: yelp multi class!!!\n')
num_classes = 5
else:
print('\nData: ag_news!!!\n')
num_classes = 4
train(train_x, train_y, test_x, test_y, embedding_matrix, vocab_encoded_length, num_classes)
if __name__ == '__main__':
tf.app.run()