forked from open-compass/opencompass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_subjective_arena_hard.py
104 lines (91 loc) · 2.96 KB
/
eval_subjective_arena_hard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from opencompass.models import HuggingFaceCausalLM
from copy import deepcopy
from opencompass.models import TurboMindModel
from mmengine.config import read_base
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import ArenaHardSummarizer
with read_base():
from .datasets.subjective.arena_hard.arena_hard_scoring import subjective_datasets
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|begin_of_text|>user<|end_header_id|>\n\n', end='<|eot_id|>'),
dict(role='BOT', begin='<|begin_of_text|>assistant<|end_header_id|>\n\n', end='<|eot_id|>', generate=True),
],
)
models = [
dict(
type=HuggingFaceCausalLM,
abbr='llama-3-8b-instruct-hf',
path='meta-llama/Meta-Llama-3-8B-Instruct',
model_kwargs=dict(device_map='auto'),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
),
meta_template=_meta_template,
max_out_len=4096,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
generation_kwargs={'eos_token_id': [128001, 128009]},
batch_padding=True,
)
]
datasets = [*subjective_datasets]
work_dir = 'outputs/arena_hard/'
# -------------Inferen Stage ----------------------------------------
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=1000000),
runner=dict(
type=LocalRunner,
max_num_workers=32,
task=dict(type=OpenICLInferTask)),
)
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=1024,
max_seq_len=4096,
batch_size=10,
retry=10,
temperature = 0,
)]
## ------------- Evaluation Configuration
gpt4_0314 = dict(
abbr='gpt4-0314',
type=OpenAI,
)
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner,
max_task_size=1000000,
mode='m2n',
infer_order='double',
base_models=[gpt4_0314],
compare_models=models,
judge_models=judge_models,
),
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)),
given_pred = [{'abbr':'gpt4-0314', 'path':''}]
)
summarizer = dict(
type=ArenaHardSummarizer
)