-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
142 lines (94 loc) · 3.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import sys
import pickle
import torch as T
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
sys.path.append("../") # nopep8
from model.dialog_acts import Encoder
from DataLoader.bucket_and_batch import bucket_and_batch
import numpy as np
import string
import random
device = T.device('cuda' if T.cuda.is_available() else 'cpu')
max_grad_norm = 1
with open("../data/processed_data.pkl", "rb") as fp:
data = pickle.load(fp)
labels2idx = data["labels2idx"]
idx2labels = {i: v for v, i in labels2idx.items()}
train_queries_vec = data["train_queries_vec"]
train_acts_vec = data["train_acts_vec"]
test_queries_vec = data["test_queries_vec"]
test_acts_vec = data["test_acts_vec"]
model = Encoder(D=test_queries_vec.shape[-1], classes_num=len(labels2idx))
model = model.cuda()
parameter_count = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Parameter Count: ", parameter_count)
optimizer = T.optim.Adam(model.parameters(), lr=1e-3)
def loss_fn(logits, labels, l2=1e-6):
regularization = T.tensor(0.).to(device) # .to(device)
for name, param in model.named_parameters():
if 'bias' not in name and 'embedding' not in name:
regularization += T.norm(param).pow(2)
loss = nn.MSELoss()
output = loss(logits, labels) + l2*regularization
return output
batches_train_queries, batches_train_classes = bucket_and_batch(
train_queries_vec, train_acts_vec, 64, len(labels2idx))
batches_test_queries, batches_test_classes = bucket_and_batch(
test_queries_vec, test_acts_vec, 64, len(labels2idx))
def predict(queries, classes, train=True):
global model
if train:
model = model.train()
else:
model = model.eval()
logits = model(T.tensor(queries).to(device))
loss = loss_fn(logits, T.tensor(classes).float().to(device))
_, sorted_idx = T.sort(logits, dim=-1, descending=True)
sorted_idx = sorted_idx[:, 0:2]
# print(sorted_idx.size())
sorted_idx = sorted_idx.cpu().numpy().tolist()
_, gold_sorted_idx = T.sort(T.tensor(classes).to(device), dim=-1, descending=True)
gold_sorted_idx = gold_sorted_idx[:, 0:2]
# print(gold_sorted_idx.size())
gold_sorted_idx = gold_sorted_idx.cpu().numpy().tolist()
score = 0
total = 0
for sorted_id, gold_sorted_id in zip(sorted_idx, gold_sorted_idx):
for id in sorted_id:
if id in gold_sorted_id:
score += 1
total += 1
return loss, (score/total)
best_val_accuracy = 0
for epoch in range(100):
i = 0
for batch_X, batch_Y in zip(batches_train_queries, batches_train_classes):
loss, accuracy = predict(batch_X, batch_Y, train=True)
loss.backward()
T.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
optimizer.zero_grad()
if i % 100 == 0:
print("Step {}, Loss: {}, Accuracy: {}".format(i, loss, accuracy))
i += 1
print("\n\nStarting Validation\n\n")
total_val_accuracy = 0
i = 0
for batch_X, batch_Y in zip(batches_test_queries, batches_test_classes):
with T.no_grad():
loss, accuracy = predict(batch_X, batch_Y, train=False)
total_val_accuracy += accuracy
if i % 100 == 0:
print("Step {}, Loss: {}, Accuracy: {}".format(i, loss, accuracy))
i += 1
mean_accuracy = total_val_accuracy/len(batches_test_queries)
print("\n\nEpoch {}, Validation Result: Accuracy: {}\n".format(epoch, mean_accuracy))
if mean_accuracy > best_val_accuracy:
best_val_accuracy = mean_accuracy
T.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}, "../Model_Backup/model.pt")
print("\nCheckpoint Saved\n")