forked from ravelantunes/dejavu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute-accuracy.py
79 lines (61 loc) · 2.97 KB
/
compute-accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import warnings
import json
import random
import csv
warnings.filterwarnings("ignore")
from dejavu.testing import *
from dejavu import Dejavu
from dejavu.recognize import FileRecognizer, MicrophoneRecognizer
from pydub import AudioSegment
def composeTestCase(pathToOriginalSong, timeSnippet, originalSongVolumeShift, overlayedNoiseVolumeShifts):
print("File: %s" % pathToOriginalSong, "Attributes: %s" % str(originalSongVolumeShift) + "," + str(overlayedNoiseVolumeShifts.values()))
originalAudio = AudioSegment.from_mp3(pathToOriginalSong)
audioSnippet = trimAudio(originalAudio, timeSnippet, 10000)
originalSnippet = audioSnippet
audioSnippet = audioSnippet + originalSongVolumeShift
for noise in overlayedNoiseVolumeShifts.keys():
overlay = AudioSegment.from_mp3(noise)
overlaySnippet = trimAudio(overlay, timeSnippet, 10000)
overlaySnippet = overlaySnippet + overlayedNoiseVolumeShifts[noise]
audioSnippet = audioSnippet.overlay(overlaySnippet, position = 0)
return [originalSnippet, audioSnippet]
def trimAudio(audio, time, padding):
randomPosition = random.randint(padding, len(audio) - padding - time)
audio = audio[randomPosition:randomPosition + time]
return audio
# load config from a JSON file (or anything outputting a python dictionary)
with open("dejavu.cnf.SAMPLE") as f:
config = json.load(f)
correctCount = 0;
if __name__ == '__main__':
for i in range(50):
randomTimeSnippet = random.randint(1000, 10000)
randomOriginalSoundLevel = random.randint(-60, 50)
randomWhiteNoiseLevel = random.randint(-60, 50)
#compose test case
snippets = composeTestCase("mp3/Sean-Fournier--Falling-For-You.mp3", randomTimeSnippet, randomOriginalSoundLevel, {"mp3/Relaxing Fan White Noise For Sleeping, Studying, Soothing Crying Baby, Insomnia.mp3" : randomWhiteNoiseLevel})
snippets[0].export("overlays/original-snippet.mp3", format="mp3")
snippets[1].export("overlays/overlayed-track.mp3", format="mp3")
#save resulting audio:
# create a Dejavu instance
djv = Dejavu(config)
# Recognize audio from its original file
originalAudio = djv.recognize(FileRecognizer, "overlays/original-snippet.mp3")
#print "From file we recognized: %s\n" % originalAudio
# Recognize audio from a file with various noises overlayed on top of it
overlayedAudio = djv.recognize(FileRecognizer, "overlays/overlayed-track.mp3")
#print "From file we recognized: %s\n" % overlayedAudio
try:
if(originalAudio["song_id"] == overlayedAudio["song_id"]):
print "correct match"
correctCount = correctCount + 1
else:
print "Incorrect match"
except TypeError:
print "Incorrect match"
print "accuracy computed as %s" % str(correctCount*100.0 / i)
def fingerprintAndComputeAccuracy(fingerprintReduction, peakSort, defaultOverlapRatio, defaultFanValue, defaultAmpMin, peakNeighbourhoodSize):
# create a Dejavu instance
djv = Dejavu(config)
# Fingerprint all the mp3's in the directory we give it
djv.fingerprint_directory("mp3", [".mp3"])