forked from AI-Hypercomputer/jetstream-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_server.py
142 lines (129 loc) · 4.09 KB
/
run_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Runs a pytorch server."""
import os
from typing import Sequence
from absl import app
from absl import flags
from jetstream.core import server_lib
from jetstream.core.config_lib import ServerConfig
import jetstream_pt
_PORT = flags.DEFINE_integer("port", 9000, "port to listen on")
_THREADS = flags.DEFINE_integer(
"threads", 64, "number of worker threads in thread pool"
)
_CONFIG = flags.DEFINE_string(
"config",
"InterleavedCPUTestServer",
"available servers",
)
_TOKENIZER_PATH = flags.DEFINE_string(
"tokenizer_path",
"tokenizer.model",
"The tokenizer model path",
required=False,
)
_CKPT_PATH = flags.DEFINE_string(
"checkpoint_path", None, "Directory for .pth checkpoints", required=False
)
_BF16_ENABLE = flags.DEFINE_bool(
"bf16_enable", True, "Whether to enable bf16", required=False
)
_CONTEXT_LENGTH = flags.DEFINE_integer(
"context_length", 1024, "The context length", required=False
)
_BATCH_SIZE = flags.DEFINE_integer(
"batch_size", 32, "The batch size", required=False
)
_PROFILING_OUTPUT = flags.DEFINE_string(
"profiling_output",
"",
"The profiling output",
required=False,
)
_PLATFORM = flags.DEFINE_string(
"platform",
"tpu=4",
"The platform that the engine runs on",
required=False,
)
_PARAM_SIZE = flags.DEFINE_string(
"param_size",
"7b",
"The model size the server runs on.",
required=False,
)
_MODEL_NAME = flags.DEFINE_string(
"model",
"llama-2",
"name of the model. Supported options are llama-2 and llama-3",
)
_QUANTIZE_WEIGHTS = flags.DEFINE_bool(
"quantize_weights", False, "weight quantization"
)
_QUANTIZE_KV_CACHE = flags.DEFINE_bool(
"quantize_kv_cache", False, "kv_cache_quantize"
)
_MAX_CACHE_LENGTH = flags.DEFINE_integer(
"max_cache_length", 1024, "kv_cache_quantize"
)
_SHARDING_CONFIG = flags.DEFINE_string(
"sharding_config", "", "config file for sharding"
)
_SHARD_ON_BATCH = flags.DEFINE_bool(
"shard_on_batch",
False,
"whether to shard on batch dimension"
"If set true, sharding_config will be ignored.",
)
# pylint: disable-next=all
def main(argv: Sequence[str]):
del argv
os.environ["XLA_FLAGS"] = "--xla_dump_to=/tmp/xla_logs --xla_dump_hlo_as_text"
# No devices for local cpu test. A None for prefill and a None for generate.
devices = server_lib.get_devices()
print(f"devices: {devices}")
sharding_config_path = _SHARDING_CONFIG.value
engine = jetstream_pt.create_pytorch_engine(
devices=devices,
tokenizer_path=_TOKENIZER_PATH.value,
ckpt_path=_CKPT_PATH.value,
bf16_enable=_BF16_ENABLE.value,
param_size=_PARAM_SIZE.value,
context_length=_CONTEXT_LENGTH.value,
batch_size=_BATCH_SIZE.value,
model_name=_MODEL_NAME.value,
quantize_weights=_QUANTIZE_WEIGHTS.value,
quantize_kv=_QUANTIZE_KV_CACHE.value,
max_cache_length=_MAX_CACHE_LENGTH.value,
sharding_config=sharding_config_path,
shard_on_batch=_SHARD_ON_BATCH.value,
)
server_config = ServerConfig(
interleaved_slices=(_PLATFORM.value,),
interleaved_engine_create_fns=(lambda a: engine,),
)
print(f"server_config: {server_config}")
# We separate credential from run so that we can unit test it with local credentials.
# We would like to add grpc credentials for OSS.
jetstream_server = server_lib.run(
threads=_THREADS.value,
port=_PORT.value,
config=server_config,
devices=devices,
)
print("Started jetstream_server....")
jetstream_server.wait_for_termination()
if __name__ == "__main__":
app.run(main)