forked from ghliu/pytorch-ddpg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
60 lines (50 loc) · 1.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def fanin_init(size, fanin=None):
fanin = fanin or size[0]
v = 1. / np.sqrt(fanin)
return torch.Tensor(size).uniform_(-v, v)
class Actor(nn.Module):
def __init__(self, nb_states, nb_actions, hidden1=400, hidden2=300, init_w=3e-3):
super(Actor, self).__init__()
self.fc1 = nn.Linear(nb_states, hidden1)
self.fc2 = nn.Linear(hidden1, hidden2)
self.fc3 = nn.Linear(hidden2, nb_actions)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
self.init_weights(init_w)
def init_weights(self, init_w):
self.fc1.weight.data = fanin_init(self.fc1.weight.data.size())
self.fc2.weight.data = fanin_init(self.fc2.weight.data.size())
self.fc3.weight.data.uniform_(-init_w, init_w)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
out = self.tanh(out)
return out
class Critic(nn.Module):
def __init__(self, nb_states, nb_actions, hidden1=400, hidden2=300, init_w=3e-3):
super(Critic, self).__init__()
self.fc1 = nn.Linear(nb_states, hidden1)
self.fc2 = nn.Linear(hidden1+nb_actions, hidden2)
self.fc3 = nn.Linear(hidden2, 1)
self.relu = nn.ReLU()
self.init_weights(init_w)
def init_weights(self, init_w):
self.fc1.weight.data = fanin_init(self.fc1.weight.data.size())
self.fc2.weight.data = fanin_init(self.fc2.weight.data.size())
self.fc3.weight.data.uniform_(-init_w, init_w)
def forward(self, xs):
x, a = xs
out = self.fc1(x)
out = self.relu(out)
# debug()
out = self.fc2(torch.cat([out,a],1))
out = self.relu(out)
out = self.fc3(out)
return out