-
Notifications
You must be signed in to change notification settings - Fork 272
/
main.py
180 lines (133 loc) · 6.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# -*- coding:utf-8 -*-
import os
import argparse
import datetime
import sys
import tensorflow as tf
import datasets.base as input_data
MAX_STEPS = 10000
BATCH_SIZE = 50
LOG_DIR = 'log/cnn1-run-%s' % datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
MODEL_DIR = '/mnt/data/prod/cnn-captcha-model/'
MODEL = os.path.join(MODEL_DIR, 'cnn-n.ckpt')
FLAGS = None
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
# with tf.name_scope('stddev'):
# stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
# tf.summary.scalar('stddev', stddev)
# tf.summary.scalar('max', tf.reduce_max(var))
# tf.summary.scalar('min', tf.reduce_min(var))
# tf.summary.histogram('histogram', var)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def main(_):
# load data
meta, train_data, test_data = input_data.load_data(FLAGS.data_dir, flatten=False)
print('data loaded')
print('train images: %s. test images: %s' % (train_data.images.shape[0], test_data.images.shape[0]))
LABEL_SIZE = meta['label_size']
NUM_PER_IMAGE = meta['num_per_image']
IMAGE_HEIGHT = meta['height']
IMAGE_WIDTH = meta['width']
IMAGE_SIZE = IMAGE_WIDTH * IMAGE_HEIGHT
print('label_size: %s, image_size: %s' % (LABEL_SIZE, IMAGE_SIZE))
# variable in the graph for input data
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT, IMAGE_WIDTH], name='x')
y_ = tf.placeholder(tf.float32, [None, NUM_PER_IMAGE * LABEL_SIZE], name='y_')
# must be 4-D with shape `[batch_size, height, width, channels]`
x_image = tf.reshape(x, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
tf.summary.image('input', x_image, max_outputs=LABEL_SIZE)
# define the model
with tf.name_scope('convolution-layer-1'):
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
with tf.name_scope('convolution-layer-2'):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
with tf.name_scope('densely-connected'):
W_fc1 = weight_variable([IMAGE_WIDTH * IMAGE_HEIGHT * 4, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, IMAGE_WIDTH*IMAGE_HEIGHT*4])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
with tf.name_scope('dropout'):
# To reduce overfitting, we will apply dropout before the readout layer
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
with tf.name_scope('readout'):
W_fc2 = weight_variable([1024, NUM_PER_IMAGE * LABEL_SIZE])
b_fc2 = bias_variable([NUM_PER_IMAGE * LABEL_SIZE])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
with tf.name_scope('reshape'):
y_expect_reshaped = tf.reshape(y_, [-1, NUM_PER_IMAGE, LABEL_SIZE])
y_got_reshaped = tf.reshape(y_conv, [-1, NUM_PER_IMAGE, LABEL_SIZE])
# Define loss and optimizer
# Returns:
# A 1-D `Tensor` of length `batch_size`
# of the same type as `logits` with the softmax cross entropy loss.
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_expect_reshaped, logits=y_got_reshaped))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
variable_summaries(cross_entropy)
# forword prop
with tf.name_scope('forword-prop'):
predict = tf.argmax(y_got_reshaped, axis=2, name='predict')
expect = tf.argmax(y_expect_reshaped, axis=2)
# evaluate accuracy
with tf.name_scope('evaluate_accuracy'):
correct_prediction = tf.equal(predict, expect)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
variable_summaries(accuracy)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
with tf.Session() as sess:
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(LOG_DIR + '/train', sess.graph)
test_writer = tf.summary.FileWriter(LOG_DIR + '/test', sess.graph)
tf.global_variables_initializer().run()
# Train
for i in range(MAX_STEPS):
batch_xs, batch_ys = train_data.next_batch(BATCH_SIZE)
step_summary, _ = sess.run([merged, train_step], feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0})
train_writer.add_summary(step_summary, i)
if i % 100 == 0:
# Test trained model
valid_summary, train_accuracy = sess.run([merged, accuracy], feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0})
train_writer.add_summary(valid_summary, i)
# final check after looping
test_x, test_y = test_data.next_batch(2000)
test_summary, test_accuracy = sess.run([merged, accuracy], feed_dict={x: test_x, y_: test_y, keep_prob: 1.0})
test_writer.add_summary(test_summary, i)
print('step %s, training accuracy = %.2f%%, testing accuracy = %.2f%%' % (i, train_accuracy * 100, test_accuracy * 100))
train_writer.close()
test_writer.close()
# final check after looping
test_x, test_y = test_data.next_batch(2000)
test_accuracy = accuracy.eval(feed_dict={x: test_x, y_: test_y, keep_prob: 1.0})
print('testing accuracy = %.2f%%' % (test_accuracy * 100, ))
save_path = saver.save(sess, MODEL)
print('Model saved in file: %s' % save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='images/char-1-epoch-2000/',
help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)