add focal
error_type for make_spacetime_data
- include option
@param sar_factor, ar_factor parameter for error_type='focal'
add better weights_matrix functionality for make_time_data
- also, use stats::arima.sim, stats::filter
make_space_data
has two types of "focal" errors: SAR, SMA
- different kernels (currently only Bartlett)
- small sample adjustments
- add cluster correction via
sandwhich::cluster
- option to calculate space weights-matrix
- option to calculate time weights-matrix
- option to calculate space-time kronecker weights-matrix
lfe::felm
- SHACsep with heteroskedasticityy FAILS for
felm
objects with type='HC3' SHACsepHC=vcovSHACsep(reg, method='bruteforce_xy',cutoff_s=.6, loc_x=DFst$Loc_X, loc_y=DFst$Loc_X, loc_t=DFst$Time_ID)
plm
This is where pre-computing and recycling a weights matrix is most useful
provide real example (e.g., stata example)
- http://freigeist.devmag.net/economics/936-spatial-temporal-autocorrelation-correction-with-r-conley.html
- https://github.com/darinchristensen/conley-se
example of bootstrapping efficiency with method='rolled'
Eliminated data.tables dependancy
Eliminated pre-formatting data-matrices
Name Changes
- vcovSTsep -> vcovST -> vcovSHACsep(add_hc=F, add_hac=T)
- vcovSCL -> vcovST.loop -> vcovSHACsep(add_hc=F, add_cl=T)