-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
113 lines (90 loc) · 3.93 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
## ref code: https://stackoverflow.com/questions/39051451/ssim-ms-ssim-for-tensorflow
import numpy as np
import tensorflow as tf
from tensorkit.annotation import wrap_tf_name_scope
def _tf_fspecial_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function
"""
x_data, y_data = np.mgrid[-size // 2 + 1:size // 2 + 1, -size // 2 + 1:size // 2 + 1]
x_data = np.expand_dims(x_data, axis=-1)
x_data = np.expand_dims(x_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
x = tf.constant(x_data, dtype=tf.float32)
y = tf.constant(y_data, dtype=tf.float32)
g = tf.exp(-((x ** 2 + y ** 2) / (2.0 * sigma ** 2)))
return g / tf.reduce_sum(g)
@wrap_tf_name_scope()
def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=1.5):
window = _tf_fspecial_gauss(size, sigma) # window shape [size, size]
K1 = 0.01
K2 = 0.03
L = 2 # depth of image (255 in case the image has a differnt scale)
C1 = (K1 * L) ** 2
C2 = (K2 * L) ** 2
mu1 = tf.nn.conv2d(img1, window, strides=[1, 1, 1, 1], padding='VALID')
mu2 = tf.nn.conv2d(img2, window, strides=[1, 1, 1, 1], padding='VALID')
mu1_sq = mu1 * mu1
mu2_sq = mu2 * mu2
mu1_mu2 = mu1 * mu2
sigma1_sq = tf.nn.conv2d(img1 * img1, window, strides=[1, 1, 1, 1], padding='VALID') - mu1_sq
sigma2_sq = tf.nn.conv2d(img2 * img2, window, strides=[1, 1, 1, 1], padding='VALID') - mu2_sq
sigma12 = tf.nn.conv2d(img1 * img2, window, strides=[1, 1, 1, 1], padding='VALID') - mu1_mu2
eps = 0.
if cs_map:
value = (((2 * mu1_mu2 + C1) * (2 * sigma12 + C2) + eps) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2) + eps),
(2.0 * sigma12 + C2 + eps) / (sigma1_sq + sigma2_sq + C2 + eps))
else:
value = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2) + eps) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2) + eps)
if mean_metric:
value = tf.reduce_mean(value)
return value
@wrap_tf_name_scope()
def tf_ms_ssim(img1, img2, mean_metric=True, level=5):
weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32)
mssim = []
mcs = []
for l in range(level):
ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False)
mssim.append(tf.reduce_mean(ssim_map))
mcs.append(tf.reduce_mean(cs_map))
filtered_im1 = tf.nn.avg_pool(img1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
filtered_im2 = tf.nn.avg_pool(img2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
img1 = filtered_im1
img2 = filtered_im2
# list to tensor of dim D+1
mssim = tf.stack(mssim, axis=0)
mcs = tf.stack(mcs, axis=0)
mssim = (mssim + 1.) / 2. # https://github.com/jorge-pessoa/pytorch-msssim/issues/2
mcs = (mcs + 1.) / 2.
value = (tf.reduce_prod(mcs[0:level - 1] ** weight[0:level - 1]) *
(mssim[level - 1] ** weight[level - 1]))
if mean_metric:
value = tf.reduce_mean(value)
return value
@wrap_tf_name_scope()
def tf_ms_ssim_loss(img1, img2, mean_metric=True, level=5):
assert img1.shape.as_list() == img2.shape.as_list(), (img1.shape, img2.shape)
dim = img1.shape[-1]
if dim == 1:
return 1. - tf_ms_ssim(img1, img2, mean_metric, level)
elif dim == 3:
item = []
for a, b in zip(tf.split(img1, dim, -1),
tf.split(img2, dim, -1)):
item.append(1. - tf_ms_ssim(a, b, mean_metric, level))
return tf.add_n(item) / 3.
else:
print(img1.shape)
raise
def _test():
import tensorkit as tk
im1 = tk.image.read_image(r'tmp\dog.jpg', batch_shape=1)
ms = tf_ms_ssim_loss(im1, im1 + 1e-3)
sess = tf.Session()
print(ms)
print(sess.run([ms]))
if __name__ == '__main__':
_test()