forked from abhishekchauhan15/AI-Yoga-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
383 lines (293 loc) · 11.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
from flask import Flask,render_template,Response
from unittest import result
import numpy as np
import cv2
import time
import PoseModule as pm
import tensorflow as tf
import tensorflow_hub as hub
from matplotlib import pyplot as plt
import data as data
import win32api
import pyttsx3
import pythoncom
from time import sleep
import schedule
import time
import matplotlib.pyplot as plt
import gtts
from playsound import playsound
app=Flask(__name__)
#loding the model
# model = hub.load(r"C:\Users\welcome\Downloads\movenet_multipose_lightning_1.tar")
# https://tfhub.dev/google/tfjs-model/movenet/multipose/lightning/1
model = hub.load("https://tfhub.dev/google/movenet/multipose/lightning/1")
movenet = model.signatures['serving_default']
cap=cv2.VideoCapture(0)
detector=pm.PoseDetector()
dataList=data.AngleData
# print(dataList)
# Check if the webcam is opened correctly
if not cap.isOpened():
raise IOError("Cannot open webcam")
def make_1080p():
cap.set(3, 1920)
cap.set(4, 1080)
def make_720p():
cap.set(3, 1280)
cap.set(4, 720)
def make_480p():
cap.set(3, 640)
cap.set(4, 480)
def change_res(width, height):
cap.set(3, width)
cap.set(4, height)
#drawing the keypoints
def draw_keypoints(frame, keypoints, confidence_threshold):
y, x, c = frame.shape
shaped = np.squeeze(np.multiply(keypoints, [y,x,1]))
for kp in shaped:
ky, kx, kp_conf = kp
if kp_conf > confidence_threshold:
cv2.circle(frame, (int(kx), int(ky)), 4, (0,255,0), -1)
# drawing the edges
EDGES = {
(0, 1): 'm',
(0, 2): 'c',
(1, 3): 'm',
(2, 4): 'c',
(0, 5): 'm',
(0, 6): 'c',
(5, 7): 'm',
(7, 9): 'm',
(6, 8): 'c',
(8, 10): 'c',
(5, 6): 'y',
(5, 11): 'm',
(6, 12): 'c',
(11, 12): 'y',
(11, 13): 'm',
(13, 15): 'm',
(12, 14): 'c',
(14, 16): 'c'
}
# drawing the connections
def draw_connections(frame, keypoints, edges, confidence_threshold):
y, x, c = frame.shape
shaped = np.squeeze(np.multiply(keypoints, [y,x,1]))
for edge, color in edges.items():
p1, p2 = edge
y1, x1, c1 = shaped[p1]
y2, x2, c2 = shaped[p2]
if (c1 > confidence_threshold) & (c2 > confidence_threshold):
cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
# looping through each person
def loop_through_people(frame, keypoints_with_scores, edges, confidence_threshold):
for person in keypoints_with_scores:
draw_connections(frame, person, edges, confidence_threshold)
draw_keypoints(frame, person, confidence_threshold)
# def speech(text):
# engine = pyttsx3.init()
# # engine.setProperty( "rate", 200 )
# # engine.setProperty( "volume", 1.0 )
# engine.say(text)
# # engine.runAndWait()
def compare_right_arm(right_arm):
tadasan=[y for x, y in list(dataList[0].items()) if type(y) == int]
# vrksana=[y for x, y in list(dataList[1].items()) if type(y) == int]
# balasana=[y for x, y in list(dataList[2].items()) if type(y) == int]
# trikonasana=[y for x, y in list(dataList[3].items()) if type(y) == int]
# virabhadrasana=[y for x, y in list(dataList[4].items()) if type(y) == int]
# adhomukha=[y for x, y in list(dataList[5].items()) if type(y) == int]
if(right_arm<=tadasan[0]):
acc=(right_arm/tadasan[0])*100
else:
acc=0
if abs(tadasan[0]-right_arm)<=10:
# and tadasan[1]-left_arm<5 and tadasan[0]-right_leg<5 and tadasan[0]-left_leg<5:
# sleep(10)
print("Your right arm is accurate")
# t1 = gtts.gTTS("Your right arm is accurate")
# t1.save("right_arm.mp3")
# playsound("right_arm.mp3")
# speech("Your right arm is accurate")
else:
# sleep(10)
print("Your right arm is not accurate")
# speech("Right arm is not correct, try again")
# t1 = gtts.gTTS("Your right arm is not accurate")
# t1.save("right_arm_no.mp3")
# playsound("right_arm_no.mp3")
return acc
def compare_left_arm(left_arm):
# for index in range(len(dataList)):
# for key in dataList[index]:
tadasan=[y for x, y in list(dataList[0].items()) if type(y) == int]
# vrksana=[y for x, y in list(dataList[1].items()) if type(y) == int]
# balasana=[y for x, y in list(dataList[2].items()) if type(y) == int]
# trikonasana=[y for x, y in list(dataList[3].items()) if type(y) == int]
# virabhadrasana=[y for x, y in list(dataList[4].items()) if type(y) == int]
# adhomukha=[y for x, y in list(dataList[5].items()) if type(y) == int]
if(left_arm<=tadasan[1]):
acc=(left_arm/tadasan[1])*100
else:
acc=0
# if tadasan[1]-left_arm>0 and tadasan[1]-left_arm<50:
if abs(tadasan[1]-left_arm)<=10:
# and tadasan[1]-left_arm<5 and tadasan[0]-right_leg<5 and tadasan[0]-left_leg<5:
print("Your left arm is accurate")
# t1 = gtts.gTTS("Your left arm is accurate")
# t1.save("left_arm.mp3")
# playsound("left_arm.mp3")
else:
print("Your left arm is not accurate , try again")
# t1 = gtts.gTTS("Your left arm is not accurate , try again")
# t1.save("left_arm_no.mp3")
# playsound("left_arm_no.mp3")
return acc
def compare_right_leg(right_leg):
tadasan=[y for x, y in list(dataList[0].items()) if type(y) == int]
# vrksana=[y for x, y in list(dataList[1].items()) if type(y) == int]
# balasana=[y for x, y in list(dataList[2].items()) if type(y) == int]
# trikonasana=[y for x, y in list(dataList[3].items()) if type(y) == int]
# virabhadrasana=[y for x, y in list(dataList[4].items()) if type(y) == int]
# adhomukha=[y for x, y in list(dataList[5].items()) if type(y) == int]
if(right_leg<=tadasan[2]):
acc=(right_leg/tadasan[2])*100
else:
acc=0
if abs(tadasan[2]-right_leg)<=10:
# and tadasan[1]-left_arm<5 and tadasan[0]-right_leg<5 and tadasan[0]-left_leg<5:
print("Your right leg is accurate")
# t1 = gtts.gTTS("Your right leg is accurate")
# t1.save("right_leg.mp3")
# playsound("right_leg.mp3")
else:
print("Your right leg is not accurate, try again")
# t1 = gtts.gTTS("Your right leg is not accurate, try again")
# t1.save("right_leg_no.mp3")
# playsound("right_leg_no.mp3")
return acc
def compare_left_leg(left_leg):
# for index in range(len(dataList)):
# for key in dataList[index]:
tadasan=[y for x, y in list(dataList[0].items()) if type(y) == int]
# vrksana=[y for x, y in list(dataList[1].items()) if type(y) == int]
# balasana=[y for x, y in list(dataList[2].items()) if type(y) == int]
# trikonasana=[y for x, y in list(dataList[3].items()) if type(y) == int]
# virabhadrasana=[y for x, y in list(dataList[4].items()) if type(y) == int]
# adhomukha=[y for x, y in list(dataList[5].items()) if type(y) == int]
if(left_leg<=tadasan[3]):
acc=(left_leg/tadasan[3])*100
else:
acc=0
if abs(tadasan[3]-left_leg and left_leg<tadasan[3] )<=10:
# and tadasan[1]-left_arm<5 and tadasan[0]-right_leg<5 and tadasan[0]-left_leg<5:
print("Your left leg is accurate")
# t1 = gtts.gTTS("Your left leg is accurate")
# t1.save("left_leg.mp3")
# playsound("left_leg.mp3")
else:
print("Your left leg is not accurate, try again")
# t1 = gtts.gTTS("Your left leg is not accurate, try again")
# t1.save("left_leg_no.mp3")
# playsound("left_leg_no.mp3")
return acc
arr = np.array([])
def generate_frames(arr):
count=0
timeout=20
timeout_start=time.time()
while time.time()<timeout_start+timeout:
while True:
## read the camera frame
success, frame = cap.read()
frame = cv2.flip(frame, 1)
#resize the image
img=frame.copy()
img =tf.image.resize_with_pad(tf.expand_dims(img, axis=0), 192,256)
input_img=tf.cast(img, dtype=tf.int32)
# detecting the image
results=movenet(input_img)
keypoints_with_scores=results['output_0'].numpy()[:,:,:51].reshape((6,17,3)) #finding the main keypoints that we need for detection
#showing the keypoints on to the screen
loop_through_people(frame, keypoints_with_scores, EDGES, 0.1)
cv2.imshow('Users Yoga Pose', frame)
# points detection
frame=detector.findPose(frame,False)
lmlist=detector.getPosition(frame,False)
if len(lmlist)!=0:
#right arm
RightArmAngle=int(detector.findAngle(frame,12,14,16))
accuracy=compare_right_arm(RightArmAngle)
# print("acc: ", accuracy)
if (count<=16 and accuracy!=0):
arr=np.append(arr, accuracy)
count=count+1
#left arm
angle=int(detector.findAngle(frame,11,13,15))
accuracy=compare_left_arm(angle)
# print(accuracy)
if (count<=16 and accuracy!=0):
arr=np.append(arr, accuracy)
count=count+1
#right leg
angle=int(detector.findAngle(frame,24,26,28))
accuracy=compare_right_leg(angle)
if (count<=16 and accuracy!=0):
arr=np.append(arr, accuracy)
count=count+1
#left leg
angle=int(detector.findAngle(frame,23,25,27))
accuracy=compare_left_leg(angle)
if (count<=16 and accuracy!=0):
arr=np.append(arr, accuracy)
count=count+1
elif(count>16):
print("entring")
print("accuracy: ", accuracyCaluclation(arr))
cv2.waitKey(1)
ret,buffer=cv2.imencode('.jpg',frame)
frame=buffer.tobytes()
yield(b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
print('Original Array:', arr)
x=range(1, len(arr)+1)
y=arr
plt.plot(x,y)
def accuracyCaluclation (arr):
accArray = np.array([])
sum=0
f=0
# print('Original Array:', arr)
for j in range (0, len(arr)-1, 4):
for i in range(j,j+4):
print("arr[i]",arr[i])
sum=sum+arr[i]
accur=sum/4
accArray=np.append(accArray,accur/4)
return accArray
@app.route("/")
def home():
return render_template("home.html")
@app.route('/tracks')
def tracks():
return render_template('tracks.html')
@app.route('/yoga')
def yoga():
return render_template('yoga.html')
@app.route('/index')
def index():
return render_template('index.html')
@app.route('/charts' )
def charts():
accArray=accuracyCaluclation(arr)
values = [12, 19, 3, 5, 2, 3]
labels = ['Red', 'Blue', 'Yellow', 'Green', 'Purple', 'Orange']
colors = ['#ff0000','#0000ff','#ffffe0','#008000','#800080','#FFA500', '#FF2554', ]
return render_template('charts.html', values=accArray, labels=labels, colors=colors)
@app.route('/video')
def video():
return Response(generate_frames(arr), mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__=="__main__":
app.run(host = "127.0.0.1",debug=True)