-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path20211125_pandas.py
206 lines (149 loc) · 5.16 KB
/
20211125_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import seaborn as sns
df= sns.load_dataset('titanic')
df.head()
df.info()
nan_deck=df['deck'].value_counts(dropna=False)
print(nan_deck)
print(df.head().isnull())
print(df.isnull().sum(axis=0))
print(df.dropna(axis=1, thresh=500).columns)
df_age= df.dropna(subset=['age'], how='any', axis=0)
print(len(df_age))
print(df['age'].head(10))
mean_age=df['age'].mean(axis=0)
df['age'].fillna(mean_age, inplace=True)
print(df['age'].head(10))
print(df['embark_town'][825:830])
most_freq=df['embark_town'].value_counts(dropna=True).idxmax()
print(most_freq)
df['embark_town'].fillna(most_freq, inplace=True)
import pandas as pd
df = pd.DataFrame({'c1':['a', 'a', 'b', 'a', 'b'],
'c2':[1, 1, 1, 2, 2],
'c3':[1, 1, 2, 2, 2]})
df_dup=df.duplicated()
print(df_dup)
col_dup= df['c2'].duplicated()
print(col_dup)
df2= df.drop_duplicates()
print(df2)
df3= df.drop_duplicates(subset=['c2','c3'])
print(df3)
import os
dir=os.getcwd()
df=pd.read_csv(dir+'/part5/auto-mpg.csv', header=None)
df.head()
df.columns= ['mpg','cylinders',' displacement','horsepower','weight','acceleration',
'model year','origin',' name']
mpg_to_kpl=1.60934/3.78541
print(mpg_to_kpl)
df['kpl']=df['mpg']*mpg_to_kpl
print(df.head(3))
df['kpl']=df['kpl'].round(2)
print(df['horsepower'].unique())
import numpy as np
df['horsepower'].replace('?', np.nan, inplace=True)
df.dropna(subset=['horsepower'],axis=0, inplace=True)
df['horsepower']=df['horsepower'].astype('float')
print(df['horsepower'].dtypes)
df.head(2)
df['origin']=df[' origin']
df.drop([' origin'], axis=1,inplace=True)
df.rename(columns={'nm':'kpl'}, inplace=True)
df.rename(columns={' name':'name'}, inplace=True)
df['origin'].replace({1:'USA', 2:'EU',3:'JPN'}, inplace=True)
print(df['origin'].unique())
print(df['origin'].dtypes)
df['origin']=df['origin'].astype('category')
print(df['origin'].dtypes)
print(df['model year'].sample(3))
df['model year']= df['model year'].astype('category')
df['horsepower'].replace('?', np.nan, inplace=True)
df.dropna(subset=['horsepower'], axis=0, inplace=True)
df['horsepower']= df['horsepower'].astype('float')
count, bin_dividers= np.histogram(df['horsepower'], bins=3)
print(count, bin_dividers)
bin_names=['저출력','보통출력','고출력']
df['hp_bin']= pd.cut(x=df['horsepower'],
bins=bin_dividers,
labels=bin_names,
include_lowest=True)
print(df[['horsepower','hp_bin']].head(10))
horsepower_dummies= pd.get_dummies(df['hp_bin'])
print(horsepower_dummies.head(19))
from sklearn import preprocessing
label_encoder= preprocessing.LabelEncoder()
onehot_encoder=preprocessing.OneHotEncoder()
onehot_labeled= label_encoder.fit_transform(df['hp_bin'].head(15))
print(onehot_labeled)
print(type(onehot_labeled))
onehot_reshaped= onehot_labeled.reshape(len(onehot_labeled),1)
print(onehot_reshaped)
onehot_fitted= onehot_encoder.fit_transform(onehot_reshaped)
print(onehot_fitted)
df=pd.read_csv(dir+'/part5/auto-mpg.csv',header=None)
df.columns=['mpg','cylinders','displacement','horsepower','weight','acceleration','model year','origin','name']
df['horsepower'].replace('?', np.nan, inplace=True)
df.dropna(subset=['horsepower'], axis=0, inplace=True)
df['horsepower']=df['horsepower'].astype('float')
print(df.horsepower.describe())
df.horsepower= df.horsepower/abs(df.horsepower.max())
print(df.horsepower.head(2))
df=pd.read_csv(dir+'/part5/auto-mpg.csv',header=None)
df.columns=['mpg','cylinders','displacement','horsepower','weight','acceleration','model year','origin','name']
df['horsepower'].replace('?', np.nan, inplace=True)
df.dropna(subset=['horsepower'], axis=0, inplace=True)
df['horsepower']=df['horsepower'].astype('float')
print(df.horsepower.describe())
min_x=df.horsepower-df.horsepower.min()
min_max=df.horsepower.max()-df.horsepower.min()
df.horsepower= min_x/min_max
df.horsepower.head(5)
print(df.horsepower.describe())
df=pd.read_csv(dir+'/part5/stock-data.csv')
print(df.head())
df.info()
df['New Date']=pd.to_datetime(df['Date'])
df.set_index('New Date', inplace=True)
df.drop('Date',axis=1, inplace=True)
print(df.head())
print(df.info())
dates=['2019-01-01','2020-03-01','2021-06-01']
ts_dates= pd.to_datetime(dates)
ts_dates
pr_day= ts_dates.to_period(freq='D')
print(pr_day)
pr_month= ts_dates.to_period(freq='M')
print(pr_month)
pr_year= ts_dates.to_period(freq='Y')
print(pr_year)
ts_ms= pd.date_range(start='2019-01-01', end=None,
periods=6, freq='MS', tz='Asia/Seoul')
print(ts_ms)
ts_me= pd.date_range('2019-01-01', periods=6, freq='M', tz='Asia/Seoul')
print(ts_me)
ts_3m= pd.date_range('2019-01-01', periods=6,
freq='3M', tz='Asia/Seoul')
print(ts_3m)
df=pd.read_csv(dir+'/part5/stock-data.csv')
df['new_Date'] = pd.to_datetime(df['Date'])
df['Year'] = df['new_Date'].dt.year
df['Month'] = df['new_Date'].dt.month
df['Day'] = df['new_Date'].dt.day
print(df.head())
print(df.index)
df.set_index('new_Date', inplace=True)
df_y = df['2018']
print(df_y.head())
df_ym = df.loc['2018-07']
df_ym.head(5)
df_ym_cols = df.loc['2018-07', 'Start':'High']
df_ym_cols
df_ymd_range = df['2018-06-25':'2018-06-20']
df_ymd_range
today=pd.to_datetime('2021-11-25')
df['time_delta']=today- df.index
df.set_index('time_delta', inplace=True)
df.head(10)
df_180=df['1250 days': '1260 days']
print(df_180)