-
Notifications
You must be signed in to change notification settings - Fork 0
/
xtnumfac.ado
456 lines (379 loc) · 15.4 KB
/
xtnumfac.ado
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
*! xtnumfac
*! v. 1.2 - 29.11.2023
capture program drop xtnumfac
program define xtnumfac, eclass
syntax varlist(min=1 ts ) [if] [in] [, kmax(integer 8) STANdardize(integer 1) Detail]
version 11.2
marksample touse, novarlist
preserve
* Error messages
if `kmax' < 1 {
display as error "Maximum number of factors needs to be at least 1."
exit
}
if `standardize' > 5 | `standardize' < 1 {
display as error "Value for standardize out of range. Values must lie between 1 and 5."
exit
}
* keep only touse data
qui keep if `touse'
* TS/XT information
cap _xt
if _rc != 0 {
tempvar idvar
gen `idvar' = 1
qui tsset
qui xtset `idvar' `r(timevar)'
}
qui xtset
local timevar `r(timevar)'
local panelvar `r(panelvar)'
local isbalanced = ("`r(balanced)'" == "strongly balanced" )
* balance dataset
if `isbalanced' == 0 {
** get T min, T bar and T max
tempvar numT
qui by `panelvar' (`timevar'), sort: gen `numT' = _N
qui sum `numT'
local Tmin = r(min)
local Tbar = r(mean)
local Tmax = r(max)
*** balance panel
qui tsfill, full
}
*** clear ereturn
ereturn clear
qui tab `timevar'
ereturn scalar T = r(r)
qui tab `panelvar'
ereturn scalar N_g = r(r)
ereturn scalar N = r(N)
if `c(version)' >= 13 local hid `hidden'
if `isbalanced' == 0 {
ereturn `hid' scalar Tbar = `Tbar'
ereturn `hid' scalar Tmin = `Tmin'
ereturn `hid' scalar Tmax = `Tmax'
}
* Get results
noi mata: mainroutine(st_data(., "`varlist'"), st_numscalar("e(N_g)"), st_numscalar("e(T)"), strtoreal(st_local("kmax")), strtoreal(st_local("standardize")))
restore
* Report results
if !missing("`detail'") {
local h1 = 4
local h2 = 25
local h3 = 50
local h4 = 70
local l1 = 16
local l2 = 27
local l3 = 38
local l4 = 49
local l5 = 60
local l6 = 71
local l7 = `l1' + 3
local l8 = `l2' + 3
local l9 = `l3' + 3
di as result _newline "Statistics for number of common factors in `varlist'"
if `isbalanced' == 1 {
dis as text _col(`h1') "Number of obs" _col(`h2') "=" as result %9.0g `e(N)' _col(`h3') as text "Obs per group" _col(`h4') "=" %9.0g `e(T)'
dis as text _col(`h1') "Number of groups" _col(`h2') "=" as result %9.0g `e(N_g)' _col(`h3') as text "Number of variables" _col(`h4') "=" %9.0g `e(k)'
}
else {
dis as text _col(`=`h3'-3') "Obs per group:"
dis as text _col(`h1') "Number of obs" _col(`h2') "=" %9.0g as result `e(N)' as text _col(`h3') "min" _col(`h4') "=" as result %9.0f `e(Tmin)'
dis as text _col(`h1') "Number of groups" _col(`h2') "=" %9.0g as result `e(N_g)' as text _col(`h3') "avg" _col(`h4') "=" as result %9.2f `e(Tbar)'
dis as text _col(`h1') "Number of variables" _col(`h2') "=" %9.0g as result `e(k)' as text _col(`h3') "max" _col(`h4') "=" as result %9.0f `e(Tmax)'
}
*di as result _col(71) as text "N" _col(73) "=" _col(76) %9.0g `e(N)'
*di as result _col(71) as text "T" _col(73) "=" _col(76) %9.0g `e(T)'
di ""
di as text "{hline 11}{c TT}{hline 69}"
di as result _col(2) "# factors " "{c |}" _col(`l1') "PC_{p1}" _col(`l2') "PC_{p2}" _col(`l3') "PC_{p3}" _col(`l4') "IC_{p1}" _col(`l5') "IC_{p2}" _col(`l6') "IC_{p3}"
di as text "{hline 11}{c +}{hline 69}"
forvalues k = 0(1)`kmax' {
forvalues myIC = 1(1)6 {
if `k'== best_numfac[1,`myIC'] {
local tempIC`myIC' : display %6.3f allICs[`k'+1,`myIC']
local tempIC`myIC' `tempIC`myIC''*
}
else {
local tempIC`myIC' : display %6.3f allICs[`k'+1,`myIC']
local tempIC`myIC' `tempIC`myIC'' " "
}
}
di as text %6s "`k'" _col(12) "{c |}" %11s "`tempIC1'" %11s "`tempIC2'" %11s "`tempIC3'" ///
%11s "`tempIC4'" %11s "`tempIC5'" %11s "`tempIC6'" %11s
}
di as text "{hline 11}{c BT}{hline 69}"
di as text "{hline 11}{c TT}{hline 69}"
di as result _col(2) "# factors " "{c |}" _col(`l7') "ER" _col(`l8') "GR" _col(`l9') "GOS"
di as text "{hline 11}{c +}{hline 69}"
forvalues k = 0(1)`kmax' {
forvalues myIC = 7(1)9 {
if `k'== best_numfac[1,`myIC'] {
local tempIC`myIC' : display %6.3f allICs[`k'+1,`myIC']
local tempIC`myIC' `tempIC`myIC''*
}
else {
local tempIC`myIC' : display %6.3f allICs[`k'+1,`myIC']
local tempIC`myIC' `tempIC`myIC'' " "
}
}
di as text %6s "`k'" _col(12) "{c |}" %11s "`tempIC7'" %11s "`tempIC8'" %11s "`tempIC9'"
}
di as text "{hline 11}{c BT}{hline 69}"
di as result "`kmax'" ///
as text " factors maximally considered."
di as text "PC_{p1},...,IC_{p3} from Bai and Ng (2002)"
di as text "ER, GR from Ahn and Horenstein (2013)"
di as text "ED from Onatski (2010)"
di as text "GOS from Gagliardini, Ossola, Scaillet (2019)"
}
else {
local l1 10
local l2 13
local l3 10
local l4 13
if `isbalanced' == 1 {
dis as text _col(2) "N" _col(6) as result "=" %9.0g `e(N)' as text _col(`=`l1'+`l2'+`l3'') "T" _col(`=`l1'+`l2'+`l3'+7') "=" as result %9.0g `e(T)'
dis as text _col(2) "N_g" _col(6) as result "=" %9.0g `e(N_g)' as text _col(`=`l1'+`l2'+`l3'') "vars." _col(`=`l1'+`l2'+`l3'+7') "=" as result %9.0g `e(k)'
}
else {
dis as text _col(`=`l1'+`l2'+`l3'-3') "Obs per group:"
dis as text _col(2) "N" _col(8) "=" as result %9.0g `e(N)' as text _col(`=`l1'+`l2'+`l3'') "min" _col(`=`l1'+`l2'+`l3'+7') "=" as result %9.0f `e(Tmin)'
dis as text _col(2) "N_g" _col(8) "=" as result %9.0g `e(N_g)' as text _col(`=`l1'+`l2'+`l3'') "avg" _col(`=`l1'+`l2'+`l3'+7') "=" as result %9.2f `e(Tbar)'
dis as text _col(2) "vars." _col(8) "=" as result %9.0g `e(k)' as text _col(`=`l1'+`l2'+`l3'') "max" _col(`=`l1'+`l2'+`l3'+7') "=" as result %9.0f `e(Tmax)'
}
*di as result _newline "Estimated number of common factors in `varlist'"
*di as result _col(`=`l1'+`l2'+`l3'+3') as text "N" _col(`=`l1'+`l2'+`l3'+6') "=" _col(`=`l1'+`l2'+`l3'+8') %9.0g `e(N)'
*di as result _col(`=`l1'+`l2'+`l3'+3') as text "T" _col(`=`l1'+`l2'+`l3'+6') "=" _col(`=`l1'+`l2'+`l3'+8') %9.0g `e(T)'
di as text "{hline `l1'}{c TT}{hline `l2'}{c TT}{hline `l3'}{c TT}{hline `l4'}"
di as text _col(2) "IC" _col(`=`l1'+1') "{c |} # factors" _col(`=`l1'+`l2'+2')"{c |}" _col(`=`l1'+`l2'+5') "IC" _col(`=`l1'+`l2'+`l3'+3') "{c |} # factors"
di as text "{hline `l1'}{c +}{hline `l2'}{c +}{hline `l3'}{c +}{hline `l4'}"
di as text " PC_{p1}" _col(`=`l1'+1') "{c |}" as result %6.0f best_numfac[1,1] ///
as text _col(`=`l1'+`l2'+2')"{c |} IC_{p1}" _col(`=`l1'+`l2'+`l3'+3') "{c |}" as result %6.0f best_numfac[1,4]
di as text " PC_{p2}" _col(`=`l1'+1') "{c |}" as result %6.0f best_numfac[1,2] ///
as text _col(`=`l1'+`l2'+2')"{c |} IC_{p2}" _col(`=`l1'+`l2'+`l3'+3') "{c |}" as result %6.0f best_numfac[1,5]
di as text " PC_{p3}" _col(`=`l1'+1') "{c |}" as result %6.0f best_numfac[1,3] ///
as text _col(`=`l1'+`l2'+2')"{c |} IC_{p3}" _col(`=`l1'+`l2'+`l3'+3') "{c |}" as result %6.0f best_numfac[1,6]
di as text " ER" _col(`=`l1'+1') "{c |}" as result %6.0f best_numfac[1,7] ///
as text _col(`=`l1'+`l2'+2')"{c |} GR" _col(`=`l1'+`l2'+`l3'+3') "{c |}" as result %6.0f best_numfac[1,8]
di as text " GOS" _col(`=`l1'+1') "{c |}" as result %6.0f best_numfac[1,9] ///
as text _col(`=`l1'+`l2'+2')"{c |} ED" _col(`=`l1'+`l2'+`l3'+3') "{c |}" as result %6.0f best_numfac[1,10]
di as text "{hline `l1'}{c BT}{hline `l2'}{c BT}{hline `l3'}{c BT}{hline `l4'}"
di as result "`kmax'" ///
as text " factors maximally considered."
di as text "PC_{p1},...,IC_{p3} from Bai and Ng (2002)"
di as text "ER, GR from Ahn and Horenstein (2013)"
di as text "ED from Onatski (2010)"
di as text "GOS from Gagliardini, Ossola, Scaillet (2019)"
}
if (e(missnum) > 0) {
di as text ""
di as text "`e(missnum)' missing values imputed before estimating number of factors."
}
///global e(missnum)=.
end
*********************************************************************************
mata
// mata drop mainroutine()
function mainroutine(real matrix data, real scalar N, real scalar T, kmax, stan) {
real matrix X, allICs, allICs0, X_sd
real rowvector best_numfac, best_numfac0
string matrix cnames, rnames
// Reshape to wide format
X = colshape(data', T)'
// Correct number of units to account for several supplied variables
N = cols(data)*N
// Add if-clauses for standardization options
pointer mfunc
if (hasmissing(X)==0) mfunc = &mymean()
else mfunc = &meanmiss()
if (stan == 2 | stan == 3) X = X - J(T,1,1)*(*mfunc)(X)
if (stan == 4 | stan == 5) X = X - J(T,1,1)*(*mfunc)(X) - (*mfunc)(X')'*J(1,N,1) + J(T,1,1)*(*mfunc)(vec(X))*J(1,N,1)
if (stan == 3 | stan == 5) {
X_sd = sqrt(((*mfunc)(X:^2) - (*mfunc)(X):^2))'
X = X :/(J(T,1,1)*X_sd')
}
// Call interior functions to get all IC values and chosen num of factors
allICs0 = numfac_int(X,kmax)
// update kmax
kmax = cols(allICs0)-1
st_local("kmax",strofreal(kmax))
best_numfac0 = bestnum_ic_int(allICs0[1..9,])
best_numfac = (best_numfac0, allICs0[10,1])
allICs = allICs0[1..9,]
// Pass results to Stata
st_matrix("e(allICs)", allICs')
st_matrix("e(best_numfac)", best_numfac)
st_numscalar("e(kmax)", kmax)
st_matrix("allICs", allICs')
st_matrix("best_numfac", best_numfac)
st_numscalar("e(k)",cols(data))
// matrix col and row names (by JD)
cnames = (J(9,1,"") , ("PC_{p1}" \ "PC_{p2}" \ "PC_{p3}" \ "IC_{p1}" \ "IC_{p2}" \ "IC_{p3}" \ "ER" \ "GR" \ "GOS"))
rnames = (J(kmax+1,1,""), strofreal(0::kmax))
st_matrixrowstripe("e(allICs)",rnames)
st_matrixcolstripe("e(allICs)",cnames)
st_matrixcolstripe("e(best_numfac)",(cnames \ ("", "ED") ))
st_matrixrowstripe("e(best_numfac)",("","k*"))
}
/// mean function which allows for missings
function meanmiss(real matrix X) return(quadcolsum(X,0):/quadcolsum(X:!=.))
function mymean(real matrix X) return(mean(X))
// mata drop numfac_int()
function numfac_int(X0, kmax0) {
// numfac_int calculates the Bai&Ng (2002) and Ahn&Horenstein (2013) ICs for
// the number of factors.
// It has two inputs:
// X0: A TxN matrix containing the data of interest.
// kmax0: The maximum number of factors to consider.
// The output is a matrix providing the IC values for factor models with
// k=1,2,...,kmax0 factors in its rows. The columns correspond to the following
// statistics: 1:PC_p1,...,6:IC_p3, 7:ER, 8:GR, 9: GOS
T = rows(X0)
N = cols(X0)
minNT = min((N, T))
if (minNT < (kmax0+5)) {
kmax0 = minNT - 5
sprintf("")
if (minNT <= 5) {
sprintf("Cannot estimate ED, at least 6 cross-sections/variables are required to estimate number of common factors.")
}
if (kmax0 <= 0) {
kmax0 = 1
}
sprintf("Number of variables/cross-sections too small. Maximum number of common factors set to %s." , strofreal(kmax0) )
sprintf("")
}
missind = X0 :== .
missnum = sum(sum(missind)')
st_numscalar("e(missnum)", missnum)
if ( missnum == 0) {
if (T > N) {
xx = cross(X0,X0)
fullsvd(xx:/(N*T), junk1, mus, junk2) // N x N
}
else {
xx = cross(X0',X0')
fullsvd(xx:/(N*T), junk1, mus ,junk2) // T x T
}
}
else {
obsind = J(T,N,1) - missind
X0mean = J(T,1,1) * meanmiss(editmissing(X0,0))
X0 = editmissing(X0,0) + X0mean:*missind
conv_crit = (X0 - X0mean):^2
conv_crit = mean(meanmiss(conv_crit)')
upd = conv_crit
while (upd > 0.001*conv_crit) {
X0_old = X0
if (T > N) {
xx = cross(X0,X0)
fullsvd(xx:/(N*T), vee_k, mus, junk2)
vee_k = vee_k[.,1..(kmax0+5)]
uu_k = X0*vee_k/sqrt(N*T)
}
else {
xx = cross(X0',X0')
fullsvd(xx:/(N*T), uu_k, mus ,junk2)
uu_k = uu_k[.,1..(kmax0+5)]
vee_k = X0'*uu_k/sqrt(N*T)
}
X0 = X0_old:*obsind + (uu_k*vee_k'):*missind:*sqrt(N*T)
upd = mean(mean(abs(X0-X0_old))')
}
}
// NOTE: Due to the equality of mean squared residuals and cumulative
// eigenvalues, this function requires neither the estimation of SSR nor a
// factor estimate.
// Bai&Ng factor estimate first
PC_ICs = J(3,kmax0,.)
IC_ICs = J(3,kmax0,.)
V_val = J(1,kmax0+1,.)
// These are the three penalties (without mm0 or the estimate of sig2)
penalties = ((N+T)/(N*T)*ln((N*T)/(N+T)) \ (N+T)/(N*T)*ln(minNT) \ ln(minNT)/minNT)
for (mm0=kmax0; mm0>=1; mm0--) {
V_val[mm0] = sum(mus[mm0+1..minNT])
PC_ICs[.,mm0] = J(3,1,V_val[mm0]) + penalties*mm0*V_val[kmax0]
IC_ICs[.,mm0] = J(3,1,ln(V_val[mm0])) + penalties*mm0
}
V_val[kmax0+1] = sum(mus[kmax0+2..minNT])
V0 = mean(vec(X0):^2)
PC_ICs = (J(3,1,V0), PC_ICs)
IC_ICs = (J(3,1,ln(V0)), IC_ICs)
// Now do Ahn&Horenstein
ER = J(1,kmax0,.)
GR = J(1,kmax0,.)
mutildes = (J(1,kmax0,.), mus[kmax0+1]/V_val[kmax0+1])
for (mm1=kmax0; mm1>=1; mm1--) {
ER[mm1] = mus[mm1]/mus[mm1+1]
mutildes[mm1] = mus[mm1]/V_val[1,mm1]
GR[mm1] = ln(1+mutildes[mm1])/ln(1+mutildes[mm1+1])
}
mockEV = V0/ln(minNT);
ER = (mockEV/mus[1], ER)
GR = (ln(1 + mockEV)/ln(1+ mutildes[1]), GR)
// Now do Onatski
mus_o = mus*N
jay = kmax0+1
ED = -4
ED_old = -2
if (minNT > 5) {
while (ED_old != ED)
{
y_delt = mus_o[jay..(jay+4)]
x_delt = J(5,1,1)
x_delt = (x_delt, (((jay-1)..(jay+3))'):^(2/3))
bet_delt = qrsolve(x_delt,y_delt)
delta = 2*abs(bet_delt[2,1])
lamdiff = mus_o[1..(jay-1)] - mus_o[2..jay]
ED_old = ED
del_check = (lamdiff :> delta)'
intlist = 1..(jay-1)
intlist2 = intlist:*del_check
ED = max(intlist2)
if (ED==0) {
break
}
jay = ED+1
}
ED = (ED, J(1,kmax0,.))
}
else {
ED = (J(rows(ER),cols(ER),.))
}
// Now do GOS
// penalty is g(n,t), p. 512
penalty = (sqrt(N)+sqrt(T))^2/(N*T) * ln(N*T / (sqrt(N)+sqrt(T))^2 )
GOS = (mus[1..kmax0+1] :- penalty)'
allICs0 = (PC_ICs\ IC_ICs\ ER\ GR\ GOS\ED)
return(allICs0)
}
// mata drop bestnum_ic_int()
function bestnum_ic_int(allICs1)
{
// bestnum_ic_int picks an estimate for the number of factors from a matrix with IC
// values for n increasing number of factors (starting at 0).
// The function has one input:
// - allICs1: a matrix containing the ICs corresponding to different
// numbers of factors (in cols) for different ICs (rows).
// We assume that the first 6 rows are the Bai&Ng ICs whereas
// rows 7 and 8 are those of Ahn and Horenstein;
// row 9 is the selection criterion used by GOS.
// The function output is a 1x8 vector of estimates for the number of factors.
best_numfac0 = J(1,9,.)
tempmin = .
for (jj=1; jj<=6; jj++) {
minindex(allICs1[jj,.], 1, tempmin, junk1)
best_numfac0[jj] = tempmin-1
}
for (jj=7; jj<=8; jj++) {
maxindex(allICs1[jj,.], 1, tempmin, junk1)
best_numfac0[jj] = tempmin-1
}
// selection rule for number of factors is: first number for which the difference is smaller than zero.
// Here we count how many are larger than zero, which is eqaul to k(min|stat<0) because we have possibility of no factors as well.
best_numfac0[9] = sum(allICs1[9,.]:>0)
return(best_numfac0)
}
end