-
Notifications
You must be signed in to change notification settings - Fork 2
/
updates.v
179 lines (162 loc) · 6.65 KB
/
updates.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
From iris.algebra Require Export cmra.
Set Default Proof Using "Type".
(** * Frame preserving updates *)
(* This quantifies over [option A] for the frame. That is necessary to
make the following hold:
x ~~> P → Some c ~~> Some P
*)
Definition cmra_updateP {A : cmraT} (x : A) (P : A → Prop) := ∀ n mz,
✓{n} (x ⋅? mz) → ∃ y, P y ∧ ✓{n} (y ⋅? mz).
Instance: Params (@cmra_updateP) 1.
Infix "~~>:" := cmra_updateP (at level 70).
Definition cmra_update {A : cmraT} (x y : A) := ∀ n mz,
✓{n} (x ⋅? mz) → ✓{n} (y ⋅? mz).
Infix "~~>" := cmra_update (at level 70).
Instance: Params (@cmra_update) 1.
Section updates.
Context {A : cmraT}.
Implicit Types x y : A.
Global Instance cmra_updateP_proper :
Proper ((≡) ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A).
Proof.
rewrite /pointwise_relation /cmra_updateP=> x x' Hx P P' HP;
split=> ? n mz; setoid_subst; naive_solver.
Qed.
Global Instance cmra_update_proper :
Proper ((≡) ==> (≡) ==> iff) (@cmra_update A).
Proof.
rewrite /cmra_update=> x x' Hx y y' Hy; split=> ? n mz ?; setoid_subst; auto.
Qed.
Lemma cmra_update_updateP x y : x ~~> y ↔ x ~~>: (y =).
Proof. split=> Hup n z ?; eauto. destruct (Hup n z) as (?&<-&?); auto. Qed.
Lemma cmra_updateP_id (P : A → Prop) x : P x → x ~~>: P.
Proof. intros ? n mz ?; eauto. Qed.
Lemma cmra_updateP_compose (P Q : A → Prop) x :
x ~~>: P → (∀ y, P y → y ~~>: Q) → x ~~>: Q.
Proof. intros Hx Hy n mz ?. destruct (Hx n mz) as (y&?&?); naive_solver. Qed.
Lemma cmra_updateP_compose_l (Q : A → Prop) x y : x ~~> y → y ~~>: Q → x ~~>: Q.
Proof.
rewrite cmra_update_updateP.
intros; apply cmra_updateP_compose with (y =); naive_solver.
Qed.
Lemma cmra_updateP_weaken (P Q : A → Prop) x :
x ~~>: P → (∀ y, P y → Q y) → x ~~>: Q.
Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed.
Global Instance cmra_update_preorder : PreOrder (@cmra_update A).
Proof.
split.
- intros x. by apply cmra_update_updateP, cmra_updateP_id.
- intros x y z. rewrite !cmra_update_updateP.
eauto using cmra_updateP_compose with subst.
Qed.
Lemma cmra_update_exclusive `{!Exclusive x} y:
✓ y → x ~~> y.
Proof. move=>??[z|]=>[/exclusiveN_l[]|_]. by apply cmra_valid_validN. Qed.
Lemma cmra_updateP_op (P1 P2 Q : A → Prop) x1 x2 :
x1 ~~>: P1 → x2 ~~>: P2 → (∀ y1 y2, P1 y1 → P2 y2 → Q (y1 ⋅ y2)) →
x1 ⋅ x2 ~~>: Q.
Proof.
intros Hx1 Hx2 Hy n mz ?.
destruct (Hx1 n (Some (x2 ⋅? mz))) as (y1&?&?).
{ by rewrite /= -cmra_op_opM_assoc. }
destruct (Hx2 n (Some (y1 ⋅? mz))) as (y2&?&?).
{ by rewrite /= -cmra_op_opM_assoc (comm _ x2) cmra_op_opM_assoc. }
exists (y1 ⋅ y2); split; last rewrite (comm _ y1) cmra_op_opM_assoc; auto.
Qed.
Lemma cmra_updateP_op' (P1 P2 : A → Prop) x1 x2 :
x1 ~~>: P1 → x2 ~~>: P2 →
x1 ⋅ x2 ~~>: λ y, ∃ y1 y2, y = y1 ⋅ y2 ∧ P1 y1 ∧ P2 y2.
Proof. eauto 10 using cmra_updateP_op. Qed.
Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1 → x2 ~~> y2 → x1 ⋅ x2 ~~> y1 ⋅ y2.
Proof.
rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence.
Qed.
Lemma cmra_update_op_l x y : x ⋅ y ~~> x.
Proof. intros n mz. rewrite comm cmra_op_opM_assoc. apply cmra_validN_op_r. Qed.
Lemma cmra_update_op_r x y : x ⋅ y ~~> y.
Proof. rewrite comm. apply cmra_update_op_l. Qed.
Lemma cmra_update_valid0 x y : (✓{0} x → x ~~> y) → x ~~> y.
Proof.
intros H n mz Hmz. apply H, Hmz.
apply (cmra_validN_le n); last lia.
destruct mz. eapply cmra_validN_op_l, Hmz. apply Hmz.
Qed.
(** ** Frame preserving updates for total CMRAs *)
Section total_updates.
Local Set Default Proof Using "Type*".
Context `{CmraTotal A}.
Lemma cmra_total_updateP x (P : A → Prop) :
x ~~>: P ↔ ∀ n z, ✓{n} (x ⋅ z) → ∃ y, P y ∧ ✓{n} (y ⋅ z).
Proof.
split=> Hup; [intros n z; apply (Hup n (Some z))|].
intros n [z|] ?; simpl; [by apply Hup|].
destruct (Hup n (core x)) as (y&?&?); first by rewrite cmra_core_r.
eauto using cmra_validN_op_l.
Qed.
Lemma cmra_total_update x y : x ~~> y ↔ ∀ n z, ✓{n} (x ⋅ z) → ✓{n} (y ⋅ z).
Proof. rewrite cmra_update_updateP cmra_total_updateP. naive_solver. Qed.
Context `{CmraDiscrete A}.
Lemma cmra_discrete_updateP (x : A) (P : A → Prop) :
x ~~>: P ↔ ∀ z, ✓ (x ⋅ z) → ∃ y, P y ∧ ✓ (y ⋅ z).
Proof.
rewrite cmra_total_updateP; setoid_rewrite <-cmra_discrete_valid_iff.
naive_solver eauto using 0.
Qed.
Lemma cmra_discrete_update (x y : A) :
x ~~> y ↔ ∀ z, ✓ (x ⋅ z) → ✓ (y ⋅ z).
Proof.
rewrite cmra_total_update; setoid_rewrite <-cmra_discrete_valid_iff.
naive_solver eauto using 0.
Qed.
End total_updates.
End updates.
(** * Transport *)
Section cmra_transport.
Context {A B : cmraT} (H : A = B).
Notation T := (cmra_transport H).
Lemma cmra_transport_updateP (P : A → Prop) (Q : B → Prop) x :
x ~~>: P → (∀ y, P y → Q (T y)) → T x ~~>: Q.
Proof. destruct H; eauto using cmra_updateP_weaken. Qed.
Lemma cmra_transport_updateP' (P : A → Prop) x :
x ~~>: P → T x ~~>: λ y, ∃ y', y = cmra_transport H y' ∧ P y'.
Proof. eauto using cmra_transport_updateP. Qed.
End cmra_transport.
(** * Product *)
Section prod.
Context {A B : cmraT}.
Implicit Types x : A * B.
Lemma prod_updateP P1 P2 (Q : A * B → Prop) x :
x.1 ~~>: P1 → x.2 ~~>: P2 → (∀ a b, P1 a → P2 b → Q (a,b)) → x ~~>: Q.
Proof.
intros Hx1 Hx2 HP n mz [??]; simpl in *.
destruct (Hx1 n (fst <$> mz)) as (a&?&?); first by destruct mz.
destruct (Hx2 n (snd <$> mz)) as (b&?&?); first by destruct mz.
exists (a,b); repeat split; destruct mz; auto.
Qed.
Lemma prod_updateP' P1 P2 x :
x.1 ~~>: P1 → x.2 ~~>: P2 → x ~~>: λ y, P1 (y.1) ∧ P2 (y.2).
Proof. eauto using prod_updateP. Qed.
Lemma prod_update x y : x.1 ~~> y.1 → x.2 ~~> y.2 → x ~~> y.
Proof.
rewrite !cmra_update_updateP.
destruct x, y; eauto using prod_updateP with subst.
Qed.
End prod.
(** * Option *)
Section option.
Context {A : cmraT}.
Implicit Types x y : A.
Lemma option_updateP (P : A → Prop) (Q : option A → Prop) x :
x ~~>: P → (∀ y, P y → Q (Some y)) → Some x ~~>: Q.
Proof.
intros Hx Hy; apply cmra_total_updateP=> n [y|] ?.
{ destruct (Hx n (Some y)) as (y'&?&?); auto. exists (Some y'); auto. }
destruct (Hx n None) as (y'&?&?); rewrite ?cmra_core_r; auto.
by exists (Some y'); auto.
Qed.
Lemma option_updateP' (P : A → Prop) x :
x ~~>: P → Some x ~~>: from_option P False.
Proof. eauto using option_updateP. Qed.
Lemma option_update x y : x ~~> y → Some x ~~> Some y.
Proof. rewrite !cmra_update_updateP; eauto using option_updateP with subst. Qed.
End option.