forked from boostcampaitech2/mrc-level2-nlp-09
-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_folds.py
76 lines (63 loc) · 1.87 KB
/
make_folds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import warnings
import argparse
import pandas as pd
from datasets import (
load_from_disk,
concatenate_datasets,
)
from sklearn.model_selection import StratifiedKFold
warnings.filterwarnings(action='ignore')
def main(args):
org_dataset = load_from_disk('../data/train_dataset/')
full_ds = concatenate_datasets(
[
org_dataset["train"].flatten_indices(),
org_dataset["validation"].flatten_indices(),
]
)
_id = [] # 중복 확인용
doc_id = []
title = []
context = []
question = []
answers = []
context_len = []
for train_data in full_ds:
_id.append(train_data['id'])
doc_id.append(train_data['document_id'])
title.append(train_data['title'])
context.append(train_data['context'])
question.append(train_data['question'])
answers.append(train_data['answers'])
context_len.append(len(train_data['context']))
train_dict = {
"id":_id,
"doc_id":doc_id,
"title":title,
"context":context,
"question":question,
"answers":answers,
"context_len":context_len
}
train_df = pd.DataFrame(train_dict)
kfold= StratifiedKFold(n_splits= args.num_folds, shuffle= True, random_state= 42)
folds = kfold.split(train_df, train_df['context_len'].values)
for fold, (train_idx, val_idx) in enumerate(folds):
val_df= train_df.iloc[val_idx]
val_df.to_csv(args.output_dir+'/fold'+str(fold+1)+'_test.csv',index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--num_folds",
type=int,
default=5,
help="decide num_folds",
)
parser.add_argument(
"--output_dir",
type=str,
default=".",
help="decide output_dir",
)
args = parser.parse_args()
main(args)