-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_lshash.py
231 lines (205 loc) · 7.55 KB
/
predict_lshash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# -*- coding: utf-8 -*-
# Importing Libraries
import cv2
from Extract import face_size, detector, models, Extract
import pickle
import json
import numpy as np
import lshashpy3
from lshashpy3 import LSHash
lsh_facenet = LSHash(hash_size=10, input_dim=128, num_hashtables=100,
storage_config={'dict': None},
matrices_filename='LS Hashes/facenet.npz',
hashtable_filename='LS Hashes/facenet_hash.npz',
overwrite=False)
lsh_deepface = LSHash(hash_size=10, input_dim=4096, num_hashtables=100,
storage_config={'dict': None},
matrices_filename='LS Hashes/deepface.npz',
hashtable_filename='LS Hashes/deepface_hash.npz',
overwrite=False)
lsh_vggface = LSHash(hash_size=10, input_dim=2622, num_hashtables=100,
storage_config={'dict': None},
matrices_filename='LS Hashes/vggface.npz',
hashtable_filename='LS Hashes/vggface_hash.npz',
overwrite=False)
lsh_openface = LSHash(hash_size=10, input_dim=128, num_hashtables=100,
storage_config={'dict': None},
matrices_filename='LS Hashes/openface.npz',
hashtable_filename='LS Hashes/openface_hash.npz',
overwrite=False)
with open('data/face_dict.json') as json_file:
f_data = json.load(json_file)
json_file.close()
with open('data/face_identity.json') as json_file:
f_identity = json.load(json_file)
json_file.close()
with open("data/face_embeddings_dict.pkl", "rb") as data:
face_embeddings_dict = pickle.load(data)
data.close()
def predict(directory, data_directory):
extract_info = Extract(directory, face_size, detector, models, predict=1)
face_embed_models = extract_info.get_face_data(
directory, face_size, models)
# predicting
o_i = 100
f_dist = []
f_ind = []
facenet = lsh_facenet.query(np.asarray(face_embed_models['facenet'][0]), num_results=o_i, distance_func="euclidean")
for ((vec, extra_data), distance) in facenet:
f_dist.append(distance)
f_ind.append(int(extra_data[4]))
d_dist = []
d_ind = []
deepface = lsh_deepface.query(np.asarray(face_embed_models['deepface'][0]), num_results=o_i, distance_func="euclidean")
for ((vec, extra_data), distance) in deepface:
d_dist.append(distance)
d_ind.append(int(extra_data[4]))
v_dist = []
v_ind = []
vggface = lsh_vggface.query(np.asarray(face_embed_models['vggface'][0]), num_results=o_i, distance_func="euclidean")
for ((vec, extra_data), distance) in vggface:
v_dist.append(distance)
v_ind.append(int(extra_data[4]))
o_dist = []
o_ind = []
openface = lsh_openface.query(np.asarray(face_embed_models['openface'][0]), num_results=o_i, distance_func="euclidean")
for ((vec, extra_data), distance) in openface:
o_dist.append(distance)
o_ind.append(int(extra_data[4]))
tree_inds = {'facenet': f_ind,
'deepface': d_ind,
'vggface': v_ind,
'openface': o_ind}
norm_embeds = {'facenet': [],
'deepface': [],
'vggface': [],
'openface': []}
for keys in list(face_embeddings_dict.keys()):
embeds = face_embeddings_dict[keys]
for i, embed in enumerate(embeds):
#print(embed)
norm = np.linalg.norm(embed)
#print(norm)
norm_embeds[keys].append(embed/norm)
test_norm_embed = {}
for keys in list(face_embed_models.keys()):
embeds = face_embed_models[keys]
for i, embed in enumerate(embeds):
#print(embed)
norm = np.linalg.norm(embed)
#print(norm)
test_norm_embed[keys] = embed/norm
tree_cos = {'facenet': [],
'deepface': [],
'vggface': [],
'openface': []}
for key in tree_inds.keys():
#print(key)
t_ind = tree_inds[key]
q = test_norm_embed[key]
for i in t_ind:
emb = norm_embeds[key][i]
s = 1 + (np.inner(emb, q))/2
tree_cos[key].append(s)
t_cos_ranks = {}
for k in tree_inds.keys():
t_ind = [x for x in tree_inds[k]]
a = sorted(
t_ind, key=lambda x: tree_cos[k][t_ind.index(x)], reverse=True)
t_cos_ranks[k] = a
f_ranklist_cos = {}
d_ranklist_cos = {}
v_ranklist_cos = {}
o_ranklist_cos = {}
f_ranklist_dist = {}
d_ranklist_dist = {}
v_ranklist_dist = {}
o_ranklist_dist = {}
imgs = set()
for i in range(o_i):
f_ranklist_dist[str(f_ind[i])] = i+1
f_ranklist_cos[str(t_cos_ranks['facenet'][i])] = i+1
d_ranklist_dist[str(d_ind[i])] = i+1
d_ranklist_cos[str(t_cos_ranks['deepface'][i])] = i+1
v_ranklist_dist[str(v_ind[i])] = i+1
v_ranklist_cos[str(t_cos_ranks['vggface'][i])] = i+1
o_ranklist_dist[str(o_ind[i])] = i+1
o_ranklist_cos[str(t_cos_ranks['openface'][i])] = i+1
imgs.add(f_ind[i])
imgs.add(d_ind[i])
imgs.add(v_ind[i])
imgs.add(o_ind[i])
imgs = list(imgs)
resrank_dist = [f_ranklist_dist, d_ranklist_dist,
v_ranklist_dist, o_ranklist_dist]
final_ranks_dist = {}
frank_d = []
for i in imgs:
s = 0
for j in resrank_dist:
#print(i)
#print(j)
#print(str(i) in j)
if str(i) in j:
r = j[str(i)]
else:
r = o_i+1
#print('%d %d'%(r,s))
s += o_i+1-r
final_ranks_dist[str(i)] = s
#print(scorelist)
frank_d = sorted(
imgs, key=lambda x: final_ranks_dist[str(x)], reverse=True)
frank_d = frank_d[:10]
result_imgs_d = []
for i in frank_d:
result_imgs_d.append(f_identity[i])
# Cos rank prediction
peoples = {}
for k in t_cos_ranks.keys():
t_lst = t_cos_ranks[k]
for i in t_lst:
if f_data[f_identity[i]]['name'] not in peoples:
peoples[f_data[f_identity[i]]['name']] = 1/40
else:
peoples[f_data[f_identity[i]]['name']] += 1/40
resrank_cos = [f_ranklist_cos, d_ranklist_cos,
v_ranklist_cos, o_ranklist_cos]
final_ranks_cos = {}
frank_c = []
for i in imgs:
s = 0
for j in resrank_cos:
if str(i) in j:
r = j[str(i)]
else:
r = 10+1
s += peoples[f_data[f_identity[i]]['name']]/r
final_ranks_cos[str(i)] = s
frank_c = sorted(imgs, key=lambda x: final_ranks_cos[str(x)], reverse=True)
frank_c = frank_c[:10]
result_imgs_c = []
for i in frank_c:
result_imgs_c.append(f_identity[i])
return result_imgs_d, result_imgs_c
data_directory = 'Images'
directory = 'Test Image/robert downey jr.jpeg'
result_imgs_d, result_imgs_c = predict(directory, data_directory)
face_imgs = []
for face in result_imgs_c:
name = face
fldr = f_data[face]['name']
x, y, w, h = f_data[face]['box']
i = face.split('_')[-1]
path = data_directory + '/' + fldr + '/' + i
img = cv2.imread(path)
face_img = img[y:y+h, x:x+w]
face_img = cv2.resize(face_img, (64, 64))
if len(face_imgs) == 0:
face_imgs = face_img
else:
face_imgs = np.concatenate((face_imgs, face_img), axis=1)
cv2.imwrite('Result_lshash.png', face_imgs)
# cv2.imshow()
if cv2.waitKey(0) & 0xFF == 'c':
cv2.destroyAllWindows()