-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathface_recog.py
142 lines (122 loc) · 4.21 KB
/
face_recog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import cv2
import sys
import os
import re
import numpy as np
import shelve,random
FONT = cv2.FONT_HERSHEY_SIMPLEX
CASCADE = "face_cascade.xml"
FACE_CASCADE = cv2.CascadeClassifier(CASCADE)
Datafile = shelve.open("Data")
if 'Data' not in Datafile.keys():
Datafile['Data']=list()
Data_list = list()
else:
Data_list = Datafile["Data"]
def Make_Changes(label):
if label not in Data_list:
Data_list.append(label)
print Data_list
def get_images(path):
images = list()
labels = list()
count=0
if len(os.listdir(path)) == 0:
print "Empty Dataset.......aborting Training"
exit()
for img in os.listdir(path):
regex = re.compile(r'(\d+|\s+)')
labl = regex.split(img)
labl = labl[0]
count=count+1
Make_Changes(labl)
image_path =os.path.join(path,img)
image=cv2.imread(image_path)
image_grey=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
images.append(image_grey)
labels.append(Data_list.index(labl))
return images,labels,count
#def add_to_dataset(image):
def initialize_recognizer():
try:
face_recognizer = cv2.face.createLBPHFaceRecognizer()
except:
face_recognizer = cv2.createLBPHFaceRecognizer()
print "Training.........."
Dataset = get_images("./Dataset")
print "Recognizer trained using Dataset: "+str(Dataset[2])+" Images used"
face_recognizer.train(Dataset[0],np.array(Dataset[1]))
return face_recognizer
def save_wrong_faces(num,temp_set,faces):
os.chdir("./Dataset")
if num:
print "Enter number below face : Correct Name:"
for i in xrange(num):
inp = raw_input()
inp = inp.split(":")
faces[int(inp[0])][0]=-1
if(inp[1].lower() != "nil"):
cv2.imwrite(inp[1]+ str(random.uniform(0,100000))+ ".jpg",temp_set[int(inp[0])])
for i in xrange(len(faces)):
if faces[i][0]!=-1 and faces[i][1]>18:
cv2.imwrite(Data_list[faces[i][0]]+str(random.uniform(0,100000))+ ".jpg",temp_set[i])
os.chdir("../")
def recognize(image_path,face_recognizer):
image=cv2.imread(image_path)
try:
image_grey=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
except:
print "Image not Found"
exit()
faces = FACE_CASCADE.detectMultiScale(image_grey,scaleFactor=1.16,minNeighbors=5,minSize=(25,25),flags=0)
temp_set = list()
face_list = list()
num=0
for x,y,w,h in faces:
sub_img=image_grey[y:y+h,x:x+w]
img=image[y:y+h,x:x+w]
temp_set.append(img)
nbr,conf = face_recognizer.predict(sub_img)
face_list.append([nbr,conf]);
cv2.rectangle(image,(x-5,y-5),(x+w+5,y+h+5),(255, 255,0),2)
cv2.putText(image,Data_list[nbr],(x,y-10), FONT, 0.5,(255,255,0),1)
cv2.putText(image,str(num),(x,y+h+20), FONT, 0.5,(255,255,0),1)
cv2.imwrite("Detected.jpg",image)
num = int(num)+1
Datafile["Data"]=Data_list
Datafile.close()
os.system("xdg-open Detected.jpg")
print "No. of faces predicted wrong:"
num_wrong = input()
save_wrong_faces(num_wrong,temp_set,face_list)
def recognize_video(face_recognizer):
cap = cv2.VideoCapture(0)
while True:
if cap.grab():
ref,image = cap.retrieve()
image_grey=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
faces = FACE_CASCADE.detectMultiScale(image_grey,scaleFactor=1.16,minNeighbors=5,minSize=(25,25),flags=0)
for x,y,w,h in faces:
sub_img=image_grey[y:y+h,x:x+w]
img=image[y:y+h,x:x+w]
nbr,conf = face_recognizer.predict(sub_img)
cv2.rectangle(image,(x-5,y-5),(x+w+5,y+h+5),(255, 255,0),2)
cv2.putText(image,Data_list[nbr],(x,y-10), FONT, 0.5,(255,255,0),1)
cv2.imshow("Faces Found",image)
if (cv2.waitKey(1) & 0xFF == ord('q')) or (cv2.waitKey(1) & 0xFF == ord('Q')):
break
Datafile["Data"]=Data_list
Datafile.close()
cap.release()
cv2.destroyAllWindows()
def main():
if len(sys.argv) not in [1, 2]:
print "Usage: python face_recog.py [<complete image_path>]"
sys.exit()
face_r = initialize_recognizer()
if len(sys.argv) == 1:
recognize_video(face_r)
else:
recognize(sys.argv[1], face_r)
if __name__ == "__main__":
main()