forked from llpcarson/stochastic_physics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mersenne_twister.F90
494 lines (493 loc) · 21.1 KB
/
mersenne_twister.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
!>\file mersenne_twister.f
!! This file contains the module that calculates random numbers using the
!! Mersenne twister
!> \defgroup mersenne_ge Mersenne Twister Module
!! Module: mersenne_twister Modern random number generator
!!\author Iredell Org: W/NX23 date: 2005-06-14
!! Abstract: This module calculates random numbers using the Mersenne twister.
!! (It has been adapted to a Fortran 90 module from open source software.
!! The comments from the original software are given below in the remarks.)
!! The Mersenne twister (aka MT19937) is a state-of-the-art random number
!! generator based on Mersenne primes and originally developed in 1997 by
!! Matsumoto and Nishimura. It has a period before repeating of 2^19937-1,
!! which certainly should be good enough for geophysical purposes. :-)
!! Considering the algorithm's robustness, it runs fairly speedily.
!! (Some timing statistics are given below in the remarks.)
!! This adaptation uses the standard Fortran 90 random number interface,
!! which can generate an arbitrary number of random numbers at one time.
!! The random numbers generated are uniformly distributed between 0 and 1.
!! The module also can generate random numbers from a Gaussian distribution
!! with mean 0 and standard deviation 1, using a Numerical Recipes algorithm.
!! The module also can generate uniformly random integer indices.
!! There are also thread-safe versions of the generators in this adaptation,
!! necessitating the passing of generator states which must be kept private.
!
! Program History Log:
! 2005-06-14 Mark Iredell
!
! Usage:
! The module can be compiled with 4-byte reals or with 8-byte reals, but
! 4-byte integers are required. The module should be endian-independent.
! The Fortran 90 interfaces random_seed and random_number are overloaded
! and can be used as in the standard by adding the appropriate use statement
! use mersenne_twister
! In the below use cases, harvest is a real array of arbitrary size,
! and iharvest is an integer array of arbitrary size.
! To generate uniformly distributed random numbers between 0 and 1,
! call random_number(harvest)
! To generate Gaussian distributed random numbers with 0 mean and 1 sigma,
! call random_gauss(harvest)
! To generate uniformly distributed random integer indices between 0 and n,
! call random_index(n,iharvest)
! In standard "saved" mode, the random number generator can be used without
! setting a seed. But to set a seed, only 1 non-zero integer is required, e.g.
! call random_setseed(4357) ! set default seed
! The full generator state can be set via the standard interface random_seed,
! but it is recommended to use this method only to restore saved states, e.g.
! call random_seed(size=lsave) ! get size of generator state seed array
! allocate isave(lsave) ! allocate seed array
! call random_seed(get=isave) ! fill seed array (then maybe save to disk)
! call random_seed(put=isave) ! restore state (after read from disk maybe)
! Locally kept generator states can also be saved in a seed array, e.g.
! type(random_stat):: stat
! call random_seed(get=isave,stat=stat) ! fill seed array
! call random_seed(put=isave,stat=stat) ! restore state
! To generate random numbers in a threaded region, the "thread-safe" mode
! must be used where generator states of type random_state are passed, e.g.
! type(random_stat):: stat(8)
! do i=1,8 ! threadable loop
! call random_setseed(7171*i,stat(i)) ! thread-safe call
! enddo
! do i=1,8 ! threadable loop
! call random_number(harvest,stat(i)) ! thread-safe call
! enddo
! do i=1,8 ! threadable loop
! call random_gauss(harvest,stat(i)) ! thread-safe call
! enddo
! do i=1,8 ! threadable loop
! call random_index(n,iharvest,stat(i))! thread-safe call
! enddo
! There is also a relatively inefficient "interactive" mode available, where
! setting seeds and generating random numbers are done in the same call.
! There is also a functional mode available, returning one value at a time.
!
! Public Defined Types:
! random_stat Generator state (private contents)
!
! Public Subprograms:
! random_seed determine size or put or get state
! size optional integer output size of seed array
! put optional integer(:) input seed array
! get optional integer(:) output seed array
! stat optional type(random_stat) (thread-safe mode)
! random_setseed set seed (thread-safe mode)
! inseed integer seed input
! stat type(random_stat) output
! random_setseed set seed (saved mode)
! inseed integer seed input
! random_number get mersenne twister random numbers (thread-safe mode)
! harvest real(:) numbers output
! stat type(random_stat) input
! random_number get mersenne twister random numbers (saved mode)
! harvest real(:) numbers output
! random_number get mersenne twister random numbers (interactive mode)
! harvest real(:) numbers output
! inseed integer seed input
! random_number_f get mersenne twister random number (functional mode)
! harvest real number output
! random_gauss get gaussian random numbers (thread-safe mode)
! harvest real(:) numbers output
! stat type(random_stat) input
! random_gauss get gaussian random numbers (saved mode)
! harvest real(:) numbers output
! random_gauss get gaussian random numbers (interactive mode)
! harvest real(:) numbers output
! inseed integer seed input
! random_gauss_f get gaussian random number (functional mode)
! harvest real number output
! random_index get random indices (thread-safe mode)
! imax integer maximum index input
! iharvest integer(:) numbers output
! stat type(random_stat) input
! random_index get random indices (saved mode)
! imax integer maximum index input
! iharvest integer(:) numbers output
! random_index get random indices (interactive mode)
! imax integer maximum index input
! iharvest integer(:) numbers output
! inseed integer seed input
! random_index_f get random index (functional mode)
! imax integer maximum index input
! iharvest integer number output
!
! Remarks:
! (1) Here are the comments in the original open source code:
! A C-program for MT19937: Real number version
! genrand() generates one pseudorandom real number (double)
! which is uniformly distributed on [0,1]-interval, for each
! call. sgenrand(seed) set initial values to the working area
! of 624 words. Before genrand(), sgenrand(seed) must be
! called once. (seed is any 32-bit integer except for 0).
! Integer generator is obtained by modifying two lines.
! Coded by Takuji Nishimura, considering the suggestions by
! Topher Cooper and Marc Rieffel in July-Aug. 1997.
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Library General Public
! License as published by the Free Software Foundation; either
! version 2 of the License, or (at your option) any later
! version.
! This library is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
! See the GNU Library General Public License for more details.
! You should have received a copy of the GNU Library General
! Public License along with this library; if not, write to the
! Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
! 02111-1307 USA
! Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura.
! When you use this, send an email to: matumoto@math.keio.ac.jp
! with an appropriate reference to your work.
! Fortran translation by Hiroshi Takano. Jan. 13, 1999.
!
! (2) On a single IBM Power4 processor on the NCEP operational cluster (2005)
! each Mersenne twister random number takes less than 30 ns, about 3 times
! slower than the default random number generator, and each random number
! from a Gaussian distribution takes less than 150 ns.
!
! Attributes:
! Language: Fortran 90
!
!$$$
module mersenne_twister
use kinddef, only: kind_dbl_prec
private
! Public declarations
public random_stat
public random_seed
public random_setseed
public random_number
public random_number_f
public random_gauss
public random_gauss_f
public random_index
public random_index_f
! Parameters
integer,parameter:: n=624
integer,parameter:: m=397
integer,parameter:: mata=-1727483681 !< constant vector a
integer,parameter:: umask=-2147483648 !< most significant w-r bits
integer,parameter:: lmask =2147483647 !< least significant r bits
integer,parameter:: tmaskb=-1658038656 !< tempering parameter
integer,parameter:: tmaskc=-272236544 !< tempering parameter
integer,parameter:: mag01(0:1)=(/0,mata/)
integer,parameter:: iseed=4357
integer,parameter:: nrest=n+6
! Defined types
type random_stat !< Generator state
private
integer:: mti=n+1
integer:: mt(0:n-1)
integer:: iset
real(kind_dbl_prec):: gset
end type
! Saved data
type(random_stat),save:: sstat
! Overloaded interfaces
interface random_setseed
module procedure random_setseed_s
module procedure random_setseed_t
end interface
interface random_number
module procedure random_number_i
module procedure random_number_s
module procedure random_number_t
end interface
interface random_gauss
module procedure random_gauss_i
module procedure random_gauss_s
module procedure random_gauss_t
end interface
interface random_index
module procedure random_index_i
module procedure random_index_s
module procedure random_index_t
end interface
! All the subprograms
contains
! Subprogram random_seed
!> This subroutine sets and gets state; overloads Fortran 90 standard.
subroutine random_seed(size,put,get,stat)
implicit none
integer,intent(out),optional:: size
integer,intent(in),optional:: put(nrest)
integer,intent(out),optional:: get(nrest)
type(random_stat),intent(inout),optional:: stat
if(present(size)) then ! return size of seed array
size=nrest
elseif(present(put)) then ! restore from seed array
if(present(stat)) then
stat%mti=put(1)
stat%mt=put(2:n+1)
stat%iset=put(n+2)
stat%gset=transfer(put(n+3:nrest),stat%gset)
if(stat%mti.lt.0.or.stat%mti.gt.n.or.any(stat%mt.eq.0).or. &
stat%iset.lt.0.or.stat%iset.gt.1) then
call random_setseed_t(iseed,stat)
! call errmsg('RANDOM_SEED: invalid seeds put - default seeds used')
endif
else
sstat%mti=put(1)
sstat%mt=put(2:n+1)
sstat%iset=put(n+2)
sstat%gset=transfer(put(n+3:nrest),sstat%gset)
if(sstat%mti.lt.0.or.sstat%mti.gt.n.or.any(sstat%mt.eq.0) &
.or.sstat%iset.lt.0.or.sstat%iset.gt.1) then
call random_setseed_t(iseed,sstat)
! call errmsg('RANDOM_SEED: invalid seeds put - default seeds used')
endif
endif
elseif(present(get)) then ! save to seed array
if(present(stat)) then
if(stat%mti.eq.n+1) call random_setseed_t(iseed,stat)
get(1)=stat%mti
get(2:n+1)=stat%mt
get(n+2)=stat%iset
get(n+3:nrest)=transfer(stat%gset,get,nrest-(n+3)+1)
else
if(sstat%mti.eq.n+1) call random_setseed_t(iseed,sstat)
get(1)=sstat%mti
get(2:n+1)=sstat%mt
get(n+2)=sstat%iset
get(n+3:nrest)=transfer(sstat%gset,get,nrest-(n+3)+1)
endif
else ! reset default seed
if(present(stat)) then
call random_setseed_t(iseed,stat)
else
call random_setseed_t(iseed,sstat)
endif
endif
end subroutine
! Subprogram random_setseed_s
!> This subroutine sets seed in saved mode.
subroutine random_setseed_s(inseed)
implicit none
integer,intent(in):: inseed
call random_setseed_t(inseed,sstat)
end subroutine
! Subprogram random_setseed_t
!> This subroutine sets seed in thread-safe mode.
subroutine random_setseed_t(inseed,stat)
implicit none
integer,intent(in):: inseed
type(random_stat),intent(out):: stat
integer ii,mti
ii=inseed
if(ii.eq.0) ii=iseed
stat%mti=n
stat%mt(0)=iand(ii,-1)
do mti=1,n-1
stat%mt(mti)=iand(69069*stat%mt(mti-1),-1)
enddo
stat%iset=0
stat%gset=0.
end subroutine
! Subprogram random_number_f
!> This function generates random numbers in functional mode.
function random_number_f() result(harvest)
implicit none
real(kind_dbl_prec):: harvest
real(kind_dbl_prec) :: h(1)
if(sstat%mti.eq.n+1) call random_setseed_t(iseed,sstat)
call random_number_t(h,sstat)
harvest=h(1)
end function
! Subprogram random_number_i
!> This subroutine generates random numbers in interactive mode.
subroutine random_number_i(harvest,inseed)
implicit none
real(kind_dbl_prec),intent(out):: harvest(:)
integer,intent(in):: inseed
type(random_stat) stat
call random_setseed_t(inseed,stat)
call random_number_t(harvest,stat)
end subroutine
! Subprogram random_number_s
!> This subroutine generates random numbers in saved mode; overloads Fortran 90 standard.
subroutine random_number_s(harvest)
implicit none
real(kind_dbl_prec),intent(out):: harvest(:)
if(sstat%mti.eq.n+1) call random_setseed_t(iseed,sstat)
call random_number_t(harvest,sstat)
end subroutine
! Subprogram random_number_t
!> This subroutine generates random numbers in thread-safe mode.
subroutine random_number_t(harvest,stat)
implicit none
real(kind_dbl_prec),intent(out):: harvest(:)
type(random_stat),intent(inout):: stat
integer j,kk,y
integer tshftu,tshfts,tshftt,tshftl
tshftu(y)=ishft(y,-11)
tshfts(y)=ishft(y,7)
tshftt(y)=ishft(y,15)
tshftl(y)=ishft(y,-18)
do j=1,size(harvest)
if(stat%mti.ge.n) then
do kk=0,n-m-1
y=ior(iand(stat%mt(kk),umask),iand(stat%mt(kk+1),lmask))
stat%mt(kk)=ieor(ieor(stat%mt(kk+m),ishft(y,-1)), mag01(iand(y,1)))
enddo
do kk=n-m,n-2
y=ior(iand(stat%mt(kk),umask),iand(stat%mt(kk+1),lmask))
stat%mt(kk)=ieor(ieor(stat%mt(kk+(m-n)),ishft(y,-1)), mag01(iand(y,1)))
enddo
y=ior(iand(stat%mt(n-1),umask),iand(stat%mt(0),lmask))
stat%mt(n-1)=ieor(ieor(stat%mt(m-1),ishft(y,-1)), mag01(iand(y,1)))
stat%mti=0
endif
y=stat%mt(stat%mti)
y=ieor(y,tshftu(y))
y=ieor(y,iand(tshfts(y),tmaskb))
y=ieor(y,iand(tshftt(y),tmaskc))
y=ieor(y,tshftl(y))
if(y.lt.0) then
harvest(j)=(real(y,kind_dbl_prec)+2.0_kind_dbl_prec**32)/(2.0_kind_dbl_prec**32-1.0_kind_dbl_prec)
else
harvest(j)=real(y,kind_dbl_prec)/(2.0_kind_dbl_prec**32-1.0_kind_dbl_prec)
endif
stat%mti=stat%mti+1
enddo
end subroutine
! Subprogram random_gauss_f
!> This subrouitne generates Gaussian random numbers in functional mode.
function random_gauss_f() result(harvest)
implicit none
real(kind_dbl_prec):: harvest
real(kind_dbl_prec) :: h(1)
if(sstat%mti.eq.n+1) call random_setseed_t(iseed,sstat)
call random_gauss_t(h,sstat)
harvest=h(1)
end function
! Subprogram random_gauss_i
!> This subrouitne generates Gaussian random numbers in interactive mode.
subroutine random_gauss_i(harvest,inseed)
implicit none
real(kind_dbl_prec),intent(out):: harvest(:)
integer,intent(in):: inseed
type(random_stat) stat
call random_setseed_t(inseed,stat)
call random_gauss_t(harvest,stat)
end subroutine
! Subprogram random_gauss_s
!> This subroutine generates Gaussian random numbers in saved mode.
subroutine random_gauss_s(harvest)
implicit none
real(kind_dbl_prec),intent(out):: harvest(:)
if(sstat%mti.eq.n+1) call random_setseed_t(iseed,sstat)
call random_gauss_t(harvest,sstat)
end subroutine
! Subprogram random_gauss_t
!> This subroutine generates Gaussian random numbers in thread-safe mode.
subroutine random_gauss_t(harvest,stat)
implicit none
real(kind_dbl_prec),intent(out):: harvest(:)
type(random_stat),intent(inout):: stat
integer mx,my,mz,j
real(kind_dbl_prec) :: r2(2),r,g1,g2
mz=size(harvest)
if(mz.le.0) return
mx=0
if(stat%iset.eq.1) then
mx=1
harvest(1)=stat%gset
stat%iset=0
endif
my=(mz-mx)/2*2+mx
do
call random_number_t(harvest(mx+1:my),stat)
do j=mx,my-2,2
call rgauss(harvest(j+1),harvest(j+2),r,g1,g2)
if(r.lt.1.) then
harvest(mx+1)=g1
harvest(mx+2)=g2
mx=mx+2
endif
enddo
if(mx.eq.my) exit
enddo
if(my.lt.mz) then
do
call random_number_t(r2,stat)
call rgauss(r2(1),r2(2),r,g1,g2)
if(r.lt.1.) exit
enddo
harvest(mz)=g1
stat%gset=g2
stat%iset=1
endif
contains
!> This subroutine contains numerical Recipes algorithm to generate Gaussian random numbers.
subroutine rgauss(r1,r2,r,g1,g2)
real(kind_dbl_prec),intent(in):: r1,r2
real(kind_dbl_prec),intent(out):: r,g1,g2
real(kind_dbl_prec) :: v1,v2,fac
v1=2.*r1-1._kind_dbl_prec
v2=2.*r2-1._kind_dbl_prec
r=v1**2+v2**2
if(r.lt.1.) then
fac=sqrt(-2._kind_dbl_prec*log(r)/r)
g1=v1*fac
g2=v2*fac
endif
end subroutine
end subroutine
! Subprogram random_index_f
!> This subroutine generates random indices in functional mode.
function random_index_f(imax) result(iharvest)
implicit none
integer,intent(in):: imax
integer:: iharvest
integer ih(1)
if(sstat%mti.eq.n+1) call random_setseed_t(iseed,sstat)
call random_index_t(imax,ih,sstat)
iharvest=ih(1)
end function
! Subprogram random_index_i
!> This subroutine generates random indices in interactive mode.
subroutine random_index_i(imax,iharvest,inseed)
implicit none
integer,intent(in):: imax
integer,intent(out):: iharvest(:)
integer,intent(in):: inseed
type(random_stat) stat
call random_setseed_t(inseed,stat)
call random_index_t(imax,iharvest,stat)
end subroutine
! Subprogram random_index_s
!> This subroutine generates random indices in saved mode.
subroutine random_index_s(imax,iharvest)
implicit none
integer,intent(in):: imax
integer,intent(out):: iharvest(:)
if(sstat%mti.eq.n+1) call random_setseed_t(iseed,sstat)
call random_index_t(imax,iharvest,sstat)
end subroutine
! Subprogram random_index_t
!> This subroutine generates random indices in thread-safe mode.
subroutine random_index_t(imax,iharvest,stat)
implicit none
integer,intent(in):: imax
integer,intent(out):: iharvest(:)
type(random_stat),intent(inout):: stat
integer,parameter:: mh=n
integer i1,i2,mz
real(kind_dbl_prec) :: h(mh)
mz=size(iharvest)
do i1=1,mz,mh
i2=min((i1-1)+mh,mz)
call random_number_t(h(:i2-(i1-1)),stat)
iharvest(i1:i2)=max(ceiling(h(:i2-(i1-1))*imax),1)
enddo
end subroutine
end module