-
Notifications
You must be signed in to change notification settings - Fork 181
/
cc2538-bsl.py
executable file
·1309 lines (1094 loc) · 47.2 KB
/
cc2538-bsl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Copyright (c) 2014, Jelmer Tiete <jelmer@tiete.be>.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Implementation based on stm32loader by Ivan A-R <ivan@tuxotronic.org>
# Serial boot loader over UART for CC13xx / CC2538 / CC26xx
# Based on the info found in TI's swru333a.pdf (spma029.pdf)
#
# Bootloader only starts if no valid image is found or if boot loader
# backdoor is enabled.
# Make sure you don't lock yourself out!! (enable backdoor in your firmware)
# More info at https://github.com/JelmerT/cc2538-bsl
from subprocess import Popen, PIPE
import sys
import getopt
import glob
import time
import os
import struct
import binascii
import traceback
try:
import magic
magic.from_file
have_magic = True
except (ImportError, AttributeError):
have_magic = False
try:
from intelhex import IntelHex
have_hex_support = True
except ImportError:
have_hex_support = False
# version
__version__ = "2.1"
# Verbose level
QUIET = 5
try:
import serial
except ImportError:
print('{} requires the Python serial library'.format(sys.argv[0]))
print('Please install it with:')
print('')
print(' pip3 install pyserial')
sys.exit(1)
def mdebug(level, message, attr='\n'):
if QUIET >= level:
print(message, end=attr, file=sys.stderr)
# Takes chip IDs (obtained via Get ID command) to human-readable names
CHIP_ID_STRS = {0xb964: 'CC2538',
0xb965: 'CC2538'
}
RETURN_CMD_STRS = {0x40: 'Success',
0x41: 'Unknown command',
0x42: 'Invalid command',
0x43: 'Invalid address',
0x44: 'Flash fail'
}
COMMAND_RET_SUCCESS = 0x40
COMMAND_RET_UNKNOWN_CMD = 0x41
COMMAND_RET_INVALID_CMD = 0x42
COMMAND_RET_INVALID_ADR = 0x43
COMMAND_RET_FLASH_FAIL = 0x44
class CmdException(Exception):
pass
class FirmwareFile(object):
HEX_FILE_EXTENSIONS = ('hex', 'ihx', 'ihex')
def __init__(self, path):
"""
Read a firmware file and store its data ready for device programming.
This class will try to guess the file type if python-magic is available.
If python-magic indicates a plain text file, and if IntelHex is
available, then the file will be treated as one of Intel HEX format.
In all other cases, the file will be treated as a raw binary file.
In both cases, the file's contents are stored in bytes for subsequent
usage to program a device or to perform a crc check.
Parameters:
path -- A str with the path to the firmware file.
Attributes:
bytes: A bytearray with firmware contents ready to send to the
device
"""
self._crc32 = None
firmware_is_hex = False
if have_magic:
file_type = magic.from_file(path, mime=True)
if file_type == 'text/plain':
firmware_is_hex = True
mdebug(5, "Firmware file: Intel Hex")
elif file_type == 'application/octet-stream':
mdebug(5, "Firmware file: Raw Binary")
else:
error_str = "Could not determine firmware type. Magic " \
"indicates '%s'" % (file_type)
raise CmdException(error_str)
else:
if os.path.splitext(path)[1][1:] in self.HEX_FILE_EXTENSIONS:
firmware_is_hex = True
mdebug(5, "Your firmware looks like an Intel Hex file")
else:
mdebug(5, "Cannot auto-detect firmware filetype: Assuming .bin")
mdebug(10, "For more solid firmware type auto-detection, install "
"python-magic.")
mdebug(10, "Please see the readme for more details.")
if firmware_is_hex:
if have_hex_support:
self.bytes = bytearray(IntelHex(path).tobinarray())
return
else:
error_str = "Firmware is Intel Hex, but the IntelHex library " \
"could not be imported.\n" \
"Install IntelHex in site-packages or program " \
"your device with a raw binary (.bin) file.\n" \
"Please see the readme for more details."
raise CmdException(error_str)
with open(path, 'rb') as f:
self.bytes = bytearray(f.read())
def crc32(self):
"""
Return the crc32 checksum of the firmware image
Return:
The firmware's CRC32, ready for comparison with the CRC
returned by the ROM bootloader's COMMAND_CRC32
"""
if self._crc32 == None:
self._crc32 = binascii.crc32(bytearray(self.bytes)) & 0xffffffff
return self._crc32
class CommandInterface(object):
ACK_BYTE = 0xCC
NACK_BYTE = 0x33
def open(self, aport=None, abaudrate=500000):
# Try to create the object using serial_for_url(), or fall back to the
# old serial.Serial() where serial_for_url() is not supported.
# serial_for_url() is a factory class and will return a different
# object based on the URL. For example serial_for_url("/dev/tty.<xyz>")
# will return a serialposix.Serial object for Ubuntu or Mac OS;
# serial_for_url("COMx") will return a serialwin32.Serial oject for Windows OS.
# For that reason, we need to make sure the port doesn't get opened at
# this stage: We need to set its attributes up depending on what object
# we get.
try:
self.sp = serial.serial_for_url(aport, do_not_open=True, timeout=10, write_timeout=10)
except AttributeError:
self.sp = serial.Serial(port=None, timeout=10, write_timeout=10)
self.sp.port = aport
if ((os.name == 'nt' and isinstance(self.sp, serial.serialwin32.Serial)) or \
(os.name == 'posix' and isinstance(self.sp, serial.serialposix.Serial))):
self.sp.baudrate=abaudrate # baudrate
self.sp.bytesize=8 # number of databits
self.sp.parity=serial.PARITY_NONE # parity
self.sp.stopbits=1 # stop bits
self.sp.xonxoff=0 # s/w (XON/XOFF) flow control
self.sp.rtscts=0 # h/w (RTS/CTS) flow control
self.sp.timeout=0.5 # set the timeout value
self.sp.open()
def invoke_bootloader(self, dtr_active_high=False, inverted=False):
# Use the DTR and RTS lines to control bootloader and the !RESET pin.
# This can automatically invoke the bootloader without the user
# having to toggle any pins.
#
# If inverted is False (default):
# DTR: connected to the bootloader pin
# RTS: connected to !RESET
# If inverted is True, pin connections are the other way round
if inverted:
set_bootloader_pin = self.sp.setRTS
set_reset_pin = self.sp.setDTR
else:
set_bootloader_pin = self.sp.setDTR
set_reset_pin = self.sp.setRTS
set_bootloader_pin(1 if not dtr_active_high else 0)
set_reset_pin(0)
set_reset_pin(1)
# Delay to get sonof itead working
time.sleep(0.1)
set_reset_pin(0)
# Make sure the pin is still asserted when the chip
# comes out of reset. This fixes an issue where
# there wasn't enough delay here on Mac.
time.sleep(0.002)
set_bootloader_pin(0 if not dtr_active_high else 1)
# Some boards have a co-processor that detects this sequence here and
# then drives the main chip's BSL enable and !RESET pins. Depending on
# board design and co-processor behaviour, the !RESET pin may get
# asserted after we have finished the sequence here. In this case, we
# need a small delay so as to avoid trying to talk to main chip before
# it has actually entered its bootloader mode.
#
# See contiki-os/contiki#1533
time.sleep(0.1)
def close(self):
self.sp.close()
def _wait_for_ack(self, info="", timeout=1):
stop = time.time() + timeout
got = bytearray(2)
while got[-2] != 00 or got[-1] not in (CommandInterface.ACK_BYTE,
CommandInterface.NACK_BYTE):
got += self._read(1)
if time.time() > stop:
raise CmdException("Timeout waiting for ACK/NACK after '%s'"
% (info,))
# Our bytearray's length is: 2 initial bytes + 2 bytes for the ACK/NACK
# plus a possible N-4 additional (buffered) bytes
mdebug(10, "Got %d additional bytes before ACK/NACK" % (len(got) - 4,))
# wait for ask
ask = got[-1]
if ask == CommandInterface.ACK_BYTE:
# ACK
return 1
elif ask == CommandInterface.NACK_BYTE:
# NACK
mdebug(10, "Target replied with a NACK during %s" % info)
return 0
# Unknown response
mdebug(10, "Unrecognised response 0x%x to %s" % (ask, info))
return 0
def _encode_addr(self, addr):
byte3 = (addr >> 0) & 0xFF
byte2 = (addr >> 8) & 0xFF
byte1 = (addr >> 16) & 0xFF
byte0 = (addr >> 24) & 0xFF
return bytes([byte0, byte1, byte2, byte3])
def _decode_addr(self, byte0, byte1, byte2, byte3):
return ((byte3 << 24) | (byte2 << 16) | (byte1 << 8) | (byte0 << 0))
def _calc_checks(self, cmd, addr, size):
return ((sum(bytearray(self._encode_addr(addr))) +
sum(bytearray(self._encode_addr(size))) +
cmd) & 0xFF)
def _write(self, data, is_retry=False):
if type(data) == int:
assert data < 256
goal = 1
written = self.sp.write(bytes([data]))
elif type(data) == bytes or type(data) == bytearray:
goal = len(data)
written = self.sp.write(data)
else:
raise CmdException("Internal Error. Bad data type: {}"
.format(type(data)))
if written < goal:
mdebug(10, "*** Only wrote {} of target {} bytes"
.format(written, goal))
if is_retry and written == 0:
raise CmdException("Failed to write data on the serial bus")
mdebug(10, "*** Retrying write for remainder")
if type(data) == int:
return self._write(data, is_retry=True)
else:
return self._write(data[written:], is_retry=True)
def _read(self, length):
return bytearray(self.sp.read(length))
def sendAck(self):
self._write(0x00)
self._write(0xCC)
return
def sendNAck(self):
self._write(0x00)
self._write(0x33)
return
def receivePacket(self):
# stop = time.time() + 5
# got = None
# while not got:
got = self._read(2)
# if time.time() > stop:
# break
# if not got:
# raise CmdException("No response to %s" % info)
size = got[0] # rcv size
chks = got[1] # rcv checksum
data = bytearray(self._read(size - 2)) # rcv data
mdebug(10, "*** received %x bytes" % size)
if chks == sum(data) & 0xFF:
self.sendAck()
return data
else:
self.sendNAck()
# TODO: retry receiving!
raise CmdException("Received packet checksum error")
return 0
def sendSynch(self):
cmd = 0x55
# flush serial input buffer for first ACK reception
self.sp.flushInput()
mdebug(10, "*** sending synch sequence")
self._write(cmd) # send U
self._write(cmd) # send U
return self._wait_for_ack("Synch (0x55 0x55)", 2)
def checkLastCmd(self):
stat = self.cmdGetStatus()
if not (stat):
raise CmdException("No response from target on status request. "
"(Did you disable the bootloader?)")
if stat[0] == COMMAND_RET_SUCCESS:
mdebug(10, "Command Successful")
return 1
else:
stat_str = RETURN_CMD_STRS.get(stat[0], None)
if stat_str == None:
mdebug(0, "Warning: unrecognized status returned "
"0x%x" % stat[0])
else:
mdebug(0, "Target returned: 0x%x, %s" % (stat[0], stat_str))
return 0
def cmdPing(self):
cmd = 0x20
lng = 3
self._write(lng) # send size
self._write(cmd) # send checksum
self._write(cmd) # send data
mdebug(10, "*** Ping command (0x20)")
if self._wait_for_ack("Ping (0x20)"):
return self.checkLastCmd()
def cmdReset(self):
cmd = 0x25
lng = 3
self._write(lng) # send size
self._write(cmd) # send checksum
self._write(cmd) # send data
mdebug(10, "*** Reset command (0x25)")
if self._wait_for_ack("Reset (0x25)"):
return 1
def cmdGetChipId(self):
cmd = 0x28
lng = 3
self._write(lng) # send size
self._write(cmd) # send checksum
self._write(cmd) # send data
mdebug(10, "*** GetChipId command (0x28)")
if self._wait_for_ack("Get ChipID (0x28)"):
# 4 byte answ, the 2 LSB hold chip ID
version = self.receivePacket()
if self.checkLastCmd():
assert len(version) == 4, ("Unreasonable chip "
"id: %s" % repr(version))
mdebug(10, " Version 0x%02X%02X%02X%02X" % tuple(version))
chip_id = (version[2] << 8) | version[3]
return chip_id
else:
raise CmdException("GetChipID (0x28) failed")
def cmdGetStatus(self):
cmd = 0x23
lng = 3
self._write(lng) # send size
self._write(cmd) # send checksum
self._write(cmd) # send data
mdebug(10, "*** GetStatus command (0x23)")
if self._wait_for_ack("Get Status (0x23)"):
stat = self.receivePacket()
return stat
def cmdSetXOsc(self):
cmd = 0x29
lng = 3
self._write(lng) # send size
self._write(cmd) # send checksum
self._write(cmd) # send data
mdebug(10, "*** SetXOsc command (0x29)")
if self._wait_for_ack("SetXOsc (0x29)"):
return 1
# UART speed (needs) to be changed!
def cmdRun(self, addr):
cmd = 0x22
lng = 7
self._write(lng) # send length
self._write(self._calc_checks(cmd, addr, 0)) # send checksum
self._write(cmd) # send cmd
self._write(self._encode_addr(addr)) # send addr
mdebug(10, "*** Run command(0x22)")
return 1
def cmdEraseMemory(self, addr, size):
cmd = 0x26
lng = 11
self._write(lng) # send length
self._write(self._calc_checks(cmd, addr, size)) # send checksum
self._write(cmd) # send cmd
self._write(self._encode_addr(addr)) # send addr
self._write(self._encode_addr(size)) # send size
mdebug(10, "*** Erase command(0x26)")
if self._wait_for_ack("Erase memory (0x26)", 10):
return self.checkLastCmd()
def cmdBankErase(self):
cmd = 0x2C
lng = 3
self._write(lng) # send length
self._write(cmd) # send checksum
self._write(cmd) # send cmd
mdebug(10, "*** Bank Erase command(0x2C)")
if self._wait_for_ack("Bank Erase (0x2C)", 10):
return self.checkLastCmd()
def cmdCRC32(self, addr, size):
cmd = 0x27
lng = 11
self._write(lng) # send length
self._write(self._calc_checks(cmd, addr, size)) # send checksum
self._write(cmd) # send cmd
self._write(self._encode_addr(addr)) # send addr
self._write(self._encode_addr(size)) # send size
mdebug(10, "*** CRC32 command(0x27)")
if self._wait_for_ack("Get CRC32 (0x27)", 1):
crc = self.receivePacket()
if self.checkLastCmd():
return self._decode_addr(crc[3], crc[2], crc[1], crc[0])
def cmdCRC32CC26xx(self, addr, size):
cmd = 0x27
lng = 15
self._write(lng) # send length
self._write(self._calc_checks(cmd, addr, size)) # send checksum
self._write(cmd) # send cmd
self._write(self._encode_addr(addr)) # send addr
self._write(self._encode_addr(size)) # send size
self._write(self._encode_addr(0x00000000)) # send number of reads
mdebug(10, "*** CRC32 command(0x27)")
if self._wait_for_ack("Get CRC32 (0x27)", 1):
crc = self.receivePacket()
if self.checkLastCmd():
return self._decode_addr(crc[3], crc[2], crc[1], crc[0])
def cmdDownload(self, addr, size):
cmd = 0x21
lng = 11
if (size % 4) != 0: # check for invalid data lengths
raise Exception('Invalid data size: %i. '
'Size must be a multiple of 4.' % size)
self._write(lng) # send length
self._write(self._calc_checks(cmd, addr, size)) # send checksum
self._write(cmd) # send cmd
self._write(self._encode_addr(addr)) # send addr
self._write(self._encode_addr(size)) # send size
mdebug(10, "*** Download command (0x21)")
if self._wait_for_ack("Download (0x21)", 2):
return self.checkLastCmd()
def cmdSendData(self, data):
cmd = 0x24
lng = len(data)+3
# TODO: check total size of data!! max 252 bytes!
self._write(lng) # send size
self._write((sum(bytearray(data))+cmd) & 0xFF) # send checksum
self._write(cmd) # send cmd
self._write(bytearray(data)) # send data
mdebug(10, "*** Send Data (0x24)")
if self._wait_for_ack("Send data (0x24)", 10):
return self.checkLastCmd()
def cmdMemRead(self, addr): # untested
cmd = 0x2A
lng = 8
self._write(lng) # send length
self._write(self._calc_checks(cmd, addr, 4)) # send checksum
self._write(cmd) # send cmd
self._write(self._encode_addr(addr)) # send addr
self._write(4) # send width, 4 bytes
mdebug(10, "*** Mem Read (0x2A)")
if self._wait_for_ack("Mem Read (0x2A)", 1):
data = self.receivePacket()
if self.checkLastCmd():
# self._decode_addr(ord(data[3]),
# ord(data[2]),ord(data[1]),ord(data[0]))
return data
def cmdMemReadCC26xx(self, addr):
cmd = 0x2A
lng = 9
self._write(lng) # send length
self._write(self._calc_checks(cmd, addr, 2)) # send checksum
self._write(cmd) # send cmd
self._write(self._encode_addr(addr)) # send addr
self._write(1) # send width, 4 bytes
self._write(1) # send number of reads
mdebug(10, "*** Mem Read (0x2A)")
if self._wait_for_ack("Mem Read (0x2A)", 1):
data = self.receivePacket()
if self.checkLastCmd():
return data
def cmdMemWrite(self, addr, data, width):
if width != len(data):
raise ValueError("width does not match len(data)")
if width != 1 and width != 4:
raise ValueError("width must be 1 or 4")
cmd = 0x2B
lng = 8 + len(data)
content = (
bytearray([cmd])
+ self._encode_addr(addr)
+ bytearray([1 if (width == 4) else 0])
+ bytearray(data)
)
self._write(lng) # send length
self._write(sum(content) & 0xFF) # send checksum
self._write(content)
mdebug(10, "*** Mem write (0x2B)")
if self._wait_for_ack("Mem Write (0x2B)", 2):
return self.checkLastCmd()
# Complex commands section
def writeMemory(self, addr, data):
lng = len(data)
# amount of data bytes transferred per packet (theory: max 252 + 3)
trsf_size = 248
empty_packet = bytearray((0xFF,) * trsf_size)
# Boot loader enable check
# TODO: implement check for all chip sizes & take into account partial
# firmware uploads
if (lng == 524288): # check if file is for 512K model
# check the boot loader enable bit (only for 512K model)
if not ((data[524247] & (1 << 4)) >> 4):
if not (conf['force'] or
query_yes_no("The boot loader backdoor is not enabled "
"in the firmware you are about to write "
"to the target. You will NOT be able to "
"reprogram the target using this tool if "
"you continue! "
"Do you want to continue?", "no")):
raise Exception('Aborted by user.')
mdebug(5, "Writing %(lng)d bytes starting at address 0x%(addr)08X" %
{'lng': lng, 'addr': addr})
offs = 0
addr_set = 0
# check if amount of remaining data is less then packet size
while lng > trsf_size:
# skip packets filled with 0xFF
if data[offs:offs+trsf_size] != empty_packet:
if addr_set != 1:
# set starting address if not set
self.cmdDownload(addr, lng)
addr_set = 1
mdebug(5, " Write %(len)d bytes at 0x%(addr)08X"
% {'addr': addr, 'len': trsf_size}, '\r')
sys.stdout.flush()
# send next data packet
self.cmdSendData(data[offs:offs+trsf_size])
else: # skipped packet, address needs to be set
addr_set = 0
offs = offs + trsf_size
addr = addr + trsf_size
lng = lng - trsf_size
mdebug(5, "Write %(len)d bytes at 0x%(addr)08X" % {'addr': addr,
'len': lng})
self.cmdDownload(addr, lng)
return self.cmdSendData(data[offs:offs+lng]) # send last data packet
class Chip(object):
def __init__(self, command_interface):
self.command_interface = command_interface
# Some defaults. The child can override.
self.flash_start_addr = 0x00000000
self.has_cmd_set_xosc = False
self.page_size = 2048
def page_to_addr(self, pages):
addresses = []
for page in pages:
addresses.append(int(device.flash_start_addr) +
int(page)*self.page_size)
return addresses
def crc(self, address, size):
return getattr(self.command_interface, self.crc_cmd)(address, size)
def disable_bootloader(self):
if not (conf['force'] or
query_yes_no("Disabling the bootloader will prevent you from "
"using this script until you re-enable the "
"bootloader using JTAG. Do you want to continue?",
"no")):
raise Exception('Aborted by user.')
pattern = struct.pack('<L', self.bootloader_dis_val)
if cmd.writeMemory(self.bootloader_address, pattern):
mdebug(5, " Set bootloader closed done ")
else:
raise CmdException("Set bootloader closed failed ")
class CC2538(Chip):
def __init__(self, command_interface):
super(CC2538, self).__init__(command_interface)
self.flash_start_addr = 0x00200000
self.addr_ieee_address_secondary = 0x0027ffcc
self.has_cmd_set_xosc = True
self.bootloader_dis_val = 0xefffffff
self.crc_cmd = "cmdCRC32"
FLASH_CTRL_DIECFG0 = 0x400D3014
FLASH_CTRL_DIECFG2 = 0x400D301C
addr_ieee_address_primary = 0x00280028
ccfg_len = 44
# Read out primary IEEE address, flash and RAM size
model = self.command_interface.cmdMemRead(FLASH_CTRL_DIECFG0)
self.size = (model[3] & 0x70) >> 4
if 0 < self.size <= 4:
self.size *= 0x20000 # in bytes
else:
self.size = 0x10000 # in bytes
self.bootloader_address = self.flash_start_addr + self.size - ccfg_len
sram = (((model[2] << 8) | model[3]) & 0x380) >> 7
sram = (2 - sram) << 3 if sram <= 1 else 32 # in KB
pg = self.command_interface.cmdMemRead(FLASH_CTRL_DIECFG2)
pg_major = (pg[2] & 0xF0) >> 4
if pg_major == 0:
pg_major = 1
pg_minor = pg[2] & 0x0F
ti_oui = bytearray([0x00, 0x12, 0x4B])
ieee_addr = self.command_interface.cmdMemRead(
addr_ieee_address_primary)
ieee_addr_end = self.command_interface.cmdMemRead(
addr_ieee_address_primary + 4)
if ieee_addr[:3] == ti_oui:
ieee_addr += ieee_addr_end
else:
ieee_addr = ieee_addr_end + ieee_addr
mdebug(5, "CC2538 PG%d.%d: %dKB Flash, %dKB SRAM, CCFG at 0x%08X"
% (pg_major, pg_minor, self.size >> 10, sram,
self.bootloader_address))
mdebug(5, "Primary IEEE Address: %s"
% (':'.join('%02X' % x for x in ieee_addr)))
def erase(self):
mdebug(5, "Erasing %s bytes starting at address 0x%08X"
% (self.size, self.flash_start_addr))
return self.command_interface.cmdEraseMemory(self.flash_start_addr,
self.size)
def read_memory(self, addr):
# CC2538's COMMAND_MEMORY_READ sends each 4-byte number in inverted
# byte order compared to what's written on the device
data = self.command_interface.cmdMemRead(addr)
return bytearray([data[x] for x in range(3, -1, -1)])
class CC26xx(Chip):
# Class constants
MISC_CONF_1 = 0x500010A0
PROTO_MASK_BLE = 0x01
PROTO_MASK_IEEE = 0x04
PROTO_MASK_BOTH = 0x05
def __init__(self, command_interface):
super(CC26xx, self).__init__(command_interface)
self.bootloader_dis_val = 0x00000000
self.crc_cmd = "cmdCRC32CC26xx"
self.page_size = 4096
ICEPICK_DEVICE_ID = 0x50001318
FCFG_USER_ID = 0x50001294
PRCM_RAMHWOPT = 0x40082250
FLASH_SIZE = 0x4003002C
addr_ieee_address_primary = 0x500012F0
ccfg_len = 88
ieee_address_secondary_offset = 0x20
bootloader_dis_offset = 0x30
sram = "Unknown"
# Determine CC13xx vs CC26xx via ICEPICK_DEVICE_ID::WAFER_ID and store
# PG revision
device_id = self.command_interface.cmdMemReadCC26xx(ICEPICK_DEVICE_ID)
wafer_id = (((device_id[3] & 0x0F) << 16) +
(device_id[2] << 8) +
(device_id[1] & 0xF0)) >> 4
pg_rev = (device_id[3] & 0xF0) >> 4
# Read FCFG1_USER_ID to get the package and supported protocols
user_id = self.command_interface.cmdMemReadCC26xx(FCFG_USER_ID)
package = {0x00: '4x4mm',
0x01: '5x5mm',
0x02: '7x7mm',
0x03: 'Wafer',
0x04: '2.7x2.7',
0x05: '7x7mm Q1',
}.get(user_id[2] & 0x03, "Unknown")
protocols = user_id[1] >> 4
# We can now detect the exact device
if wafer_id == 0xB99A:
chip = self._identify_cc26xx(pg_rev, protocols)
elif wafer_id == 0xB9BE:
chip = self._identify_cc13xx(pg_rev, protocols)
elif wafer_id == 0xBB41:
chip = self._identify_cc13xx(pg_rev, protocols)
self.page_size = 8192
# Read flash size, calculate and store bootloader disable address
self.size = self.command_interface.cmdMemReadCC26xx(
FLASH_SIZE)[0] * self.page_size
self.bootloader_address = self.size - ccfg_len + bootloader_dis_offset
self.addr_ieee_address_secondary = (self.size - ccfg_len +
ieee_address_secondary_offset)
# RAM size
ramhwopt_size = self.command_interface.cmdMemReadCC26xx(
PRCM_RAMHWOPT)[0] & 3
if ramhwopt_size == 3:
sram = "20KB"
elif ramhwopt_size == 2:
sram = "16KB"
else:
sram = "Unknown"
# Primary IEEE address. Stored with the MSB at the high address
ieee_addr = self.command_interface.cmdMemReadCC26xx(
addr_ieee_address_primary + 4)[::-1]
ieee_addr += self.command_interface.cmdMemReadCC26xx(
addr_ieee_address_primary)[::-1]
mdebug(5, "%s (%s): %dKB Flash, %s SRAM, CCFG.BL_CONFIG at 0x%08X"
% (chip, package, self.size >> 10, sram,
self.bootloader_address))
mdebug(5, "Primary IEEE Address: %s"
% (':'.join('%02X' % x for x in ieee_addr)))
def _identify_cc26xx(self, pg, protocols):
chips_dict = {
CC26xx.PROTO_MASK_IEEE: 'CC2630',
CC26xx.PROTO_MASK_BLE: 'CC2640',
CC26xx.PROTO_MASK_BOTH: 'CC2650',
}
chip_str = chips_dict.get(protocols & CC26xx.PROTO_MASK_BOTH, "Unknown")
if pg == 1:
pg_str = "PG1.0"
elif pg == 3:
pg_str = "PG2.0"
elif pg == 7:
pg_str = "PG2.1"
elif pg == 8 or pg == 0x0B:
# CC26x0 PG2.2+ or CC26x0R2
rev_minor = self.command_interface.cmdMemReadCC26xx(
CC26xx.MISC_CONF_1)[0]
if rev_minor == 0xFF:
rev_minor = 0x00
if pg == 8:
# CC26x0
pg_str = "PG2.%d" % (2 + rev_minor,)
elif pg == 0x0B:
# HW revision R2, update Chip name
chip_str += 'R2'
pg_str = "PG%d.%d" % (1 + (rev_minor // 10), rev_minor % 10)
return "%s %s" % (chip_str, pg_str)
def _identify_cc13xx(self, pg, protocols):
chip_str = "CC1310"
if protocols & CC26xx.PROTO_MASK_IEEE == CC26xx.PROTO_MASK_IEEE:
chip_str = "CC1350"
if pg == 0:
pg_str = "PG1.0"
elif pg == 2 or pg == 3:
rev_minor = self.command_interface.cmdMemReadCC26xx(
CC26xx.MISC_CONF_1)[0]
if rev_minor == 0xFF:
rev_minor = 0x00
pg_str = "PG2.%d" % (rev_minor,)
return "%s %s" % (chip_str, pg_str)
def erase(self):
mdebug(5, "Erasing all main bank flash sectors")
return self.command_interface.cmdBankErase()
def read_memory(self, addr):
# CC26xx COMMAND_MEMORY_READ returns contents in the same order as
# they are stored on the device
return self.command_interface.cmdMemReadCC26xx(addr)
def query_yes_no(question, default="yes"):
valid = {"yes": True,
"y": True,
"ye": True,
"no": False,
"n": False}
if default == None:
prompt = " [y/n] "
elif default == "yes":
prompt = " [Y/n] "
elif default == "no":
prompt = " [y/N] "
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
sys.stdout.write(question + prompt)
choice = input().lower()
if default != None and choice == '':
return valid[default]
elif choice in valid:
return valid[choice]
else:
sys.stdout.write("Please respond with 'yes' or 'no' "
"(or 'y' or 'n').\n")
# Convert the entered IEEE address into an integer
def parse_ieee_address(inaddr):
try:
return int(inaddr, 16)
except ValueError:
# inaddr is not a hex string, look for other formats
if ':' in inaddr:
bytes = inaddr.split(':')
elif '-' in inaddr:
bytes = inaddr.split('-')
if len(bytes) != 8:
raise ValueError("Supplied IEEE address does not contain 8 bytes")
addr = 0
for i, b in zip(range(8), bytes):
try:
addr += int(b, 16) << (56-(i*8))
except ValueError:
raise ValueError("IEEE address contains invalid bytes")
return addr
def _parse_range_values(device, values):
if len(values) and len(values) < 3:
page_addr_range = []
try:
for value in values:
try:
if int(value) % int(device.page_size) != 0:
raise ValueError("Supplied addresses are not page_size: "
"{} aligned".format(device.page_size))
page_addr_range.append(int(value))
except ValueError:
if int(value, 16) % int(device.page_size) != 0:
raise ValueError("Supplied addresses are not page_size: "
"{} aligned".format(device.page_size))
page_addr_range.append(int(value, 16))
return page_addr_range
except ValueError:
raise ValueError("Supplied value is not a page or an address")
else:
raise ValueError("Supplied range is neither a page or address range")
def parse_page_address_range(device, pg_range):
"""Convert the address/page range into a start address and byte length"""
values = pg_range.split(',')
page_addr = []
# check if first argument is character
if values[0].isalpha():
values[0].lower()
if values[0] == 'p' or values[0] == 'page':
if values[0] == 'p':
values[1:] = device.page_to_addr(values[1:])
elif values[0] != 'a' and values[0] != 'address':
raise ValueError("Prefix is neither a(address) or p(page)")