forked from xuezhong/bilm_paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
executable file
·509 lines (416 loc) · 16.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import random
import numpy as np
import io
import six
class Vocabulary(object):
'''
A token vocabulary. Holds a map from token to ids and provides
a method for encoding text to a sequence of ids.
'''
def __init__(self, filename, validate_file=False):
'''
filename = the vocabulary file. It is a flat text file with one
(normalized) token per line. In addition, the file should also
contain the special tokens <S>, </S>, <UNK> (case sensitive).
'''
self._id_to_word = []
self._word_to_id = {}
self._unk = -1
self._bos = -1
self._eos = -1
with io.open(filename, 'r', encoding='utf-8') as f:
idx = 0
for line in f:
word_name = line.strip()
if word_name == '<S>':
self._bos = idx
elif word_name == '</S>':
self._eos = idx
elif word_name == '<UNK>':
self._unk = idx
if word_name == '!!!MAXTERMID':
continue
self._id_to_word.append(word_name)
self._word_to_id[word_name] = idx
idx += 1
# check to ensure file has special tokens
if validate_file:
if self._bos == -1 or self._eos == -1 or self._unk == -1:
raise ValueError("Ensure the vocabulary file has "
"<S>, </S>, <UNK> tokens")
@property
def bos(self):
return self._bos
@property
def eos(self):
return self._eos
@property
def unk(self):
return self._unk
@property
def size(self):
return len(self._id_to_word)
def word_to_id(self, word):
if word in self._word_to_id:
return self._word_to_id[word]
return self.unk
def id_to_word(self, cur_id):
return self._id_to_word[cur_id]
def decode(self, cur_ids):
"""Convert a list of ids to a sentence, with space inserted."""
return ' '.join([self.id_to_word(cur_id) for cur_id in cur_ids])
def encode(self, sentence, reverse=False, split=True):
"""Convert a sentence to a list of ids, with special tokens added.
Sentence is a single string with tokens separated by whitespace.
If reverse, then the sentence is assumed to be reversed, and
this method will swap the BOS/EOS tokens appropriately."""
if split:
word_ids = [
self.word_to_id(cur_word) for cur_word in sentence.split()
]
else:
word_ids = [self.word_to_id(cur_word) for cur_word in sentence]
if reverse:
return np.array([self.eos] + word_ids + [self.bos], dtype=np.int32)
else:
return np.array([self.bos] + word_ids + [self.eos], dtype=np.int32)
class UnicodeCharsVocabulary(Vocabulary):
"""Vocabulary containing character-level and word level information.
Has a word vocabulary that is used to lookup word ids and
a character id that is used to map words to arrays of character ids.
The character ids are defined by ord(c) for c in word.encode('utf-8')
This limits the total number of possible char ids to 256.
To this we add 5 additional special ids: begin sentence, end sentence,
begin word, end word and padding.
WARNING: for prediction, we add +1 to the output ids from this
class to create a special padding id (=0). As a result, we suggest
you use the `Batcher`, `TokenBatcher`, and `LMDataset` classes instead
of this lower level class. If you are using this lower level class,
then be sure to add the +1 appropriately, otherwise embeddings computed
from the pre-trained model will be useless.
"""
def __init__(self, filename, max_word_length, **kwargs):
super(UnicodeCharsVocabulary, self).__init__(filename, **kwargs)
self._max_word_length = max_word_length
# char ids 0-255 come from utf-8 encoding bytes
# assign 256-300 to special chars
self.bos_char = 256 # <begin sentence>
self.eos_char = 257 # <end sentence>
self.bow_char = 258 # <begin word>
self.eow_char = 259 # <end word>
self.pad_char = 260 # <padding>
num_words = len(self._id_to_word)
self._word_char_ids = np.zeros(
[num_words, max_word_length], dtype=np.int32)
# the charcter representation of the begin/end of sentence characters
def _make_bos_eos(c):
r = np.zeros([self.max_word_length], dtype=np.int32)
r[:] = self.pad_char
r[0] = self.bow_char
r[1] = c
r[2] = self.eow_char
return r
self.bos_chars = _make_bos_eos(self.bos_char)
self.eos_chars = _make_bos_eos(self.eos_char)
for i, word in enumerate(self._id_to_word):
self._word_char_ids[i] = self._convert_word_to_char_ids(word)
self._word_char_ids[self.bos] = self.bos_chars
self._word_char_ids[self.eos] = self.eos_chars
@property
def word_char_ids(self):
return self._word_char_ids
@property
def max_word_length(self):
return self._max_word_length
def _convert_word_to_char_ids(self, word):
code = np.zeros([self.max_word_length], dtype=np.int32)
code[:] = self.pad_char
word_encoded = word.encode('utf-8',
'ignore')[:(self.max_word_length - 2)]
code[0] = self.bow_char
for k, chr_id in enumerate(word_encoded, start=1):
code[k] = ord(chr_id)
code[k + 1] = self.eow_char
return code
def word_to_char_ids(self, word):
if word in self._word_to_id:
return self._word_char_ids[self._word_to_id[word]]
else:
return self._convert_word_to_char_ids(word)
def encode_chars(self, sentence, reverse=False, split=True):
'''
Encode the sentence as a white space delimited string of tokens.
'''
if split:
chars_ids = [
self.word_to_char_ids(cur_word)
for cur_word in sentence.split()
]
else:
chars_ids = [
self.word_to_char_ids(cur_word) for cur_word in sentence
]
if reverse:
return np.vstack([self.eos_chars] + chars_ids + [self.bos_chars])
else:
return np.vstack([self.bos_chars] + chars_ids + [self.eos_chars])
class Batcher(object):
'''
Batch sentences of tokenized text into character id matrices.
'''
# def __init__(self, lm_vocab_file: str, max_token_length: int):
def __init__(self, lm_vocab_file, max_token_length):
'''
lm_vocab_file = the language model vocabulary file (one line per
token)
max_token_length = the maximum number of characters in each token
'''
max_token_length = int(max_token_length)
self._lm_vocab = UnicodeCharsVocabulary(lm_vocab_file,
max_token_length)
self._max_token_length = max_token_length
# def batch_sentences(self, sentences: List[List[str]]):
def batch_sentences(self, sentences):
'''
Batch the sentences as character ids
Each sentence is a list of tokens without <s> or </s>, e.g.
[['The', 'first', 'sentence', '.'], ['Second', '.']]
'''
n_sentences = len(sentences)
max_length = max(len(sentence) for sentence in sentences) + 2
X_char_ids = np.zeros(
(n_sentences, max_length, self._max_token_length), dtype=np.int64)
for k, sent in enumerate(sentences):
length = len(sent) + 2
char_ids_without_mask = self._lm_vocab.encode_chars(
sent, split=False)
# add one so that 0 is the mask value
X_char_ids[k, :length, :] = char_ids_without_mask + 1
return X_char_ids
class TokenBatcher(object):
'''
Batch sentences of tokenized text into token id matrices.
'''
def __init__(self, lm_vocab_file):
# def __init__(self, lm_vocab_file: str):
'''
lm_vocab_file = the language model vocabulary file (one line per
token)
'''
self._lm_vocab = Vocabulary(lm_vocab_file)
# def batch_sentences(self, sentences: List[List[str]]):
def batch_sentences(self, sentences):
'''
Batch the sentences as character ids
Each sentence is a list of tokens without <s> or </s>, e.g.
[['The', 'first', 'sentence', '.'], ['Second', '.']]
'''
n_sentences = len(sentences)
max_length = max(len(sentence) for sentence in sentences) + 2
X_ids = np.zeros((n_sentences, max_length), dtype=np.int64)
for k, sent in enumerate(sentences):
length = len(sent) + 2
ids_without_mask = self._lm_vocab.encode(sent, split=False)
# add one so that 0 is the mask value
X_ids[k, :length] = ids_without_mask + 1
return X_ids
##### for training
def _get_batch(generator, batch_size, num_steps, max_word_length):
"""Read batches of input."""
cur_stream = [None] * batch_size
no_more_data = False
while True:
inputs = np.zeros([batch_size, num_steps], np.int32)
if max_word_length is not None:
char_inputs = np.zeros([batch_size, num_steps, max_word_length],
np.int32)
else:
char_inputs = None
targets = np.zeros([batch_size, num_steps], np.int32)
for i in range(batch_size):
cur_pos = 0
while cur_pos < num_steps:
if cur_stream[i] is None or len(cur_stream[i][0]) <= 1:
try:
cur_stream[i] = list(next(generator))
except StopIteration:
# No more data, exhaust current streams and quit
no_more_data = True
break
how_many = min(len(cur_stream[i][0]) - 1, num_steps - cur_pos)
next_pos = cur_pos + how_many
inputs[i, cur_pos:next_pos] = cur_stream[i][0][:how_many]
if max_word_length is not None:
char_inputs[i, cur_pos:next_pos] = cur_stream[i][
1][:how_many]
targets[i, cur_pos:next_pos] = cur_stream[i][0][1:how_many + 1]
cur_pos = next_pos
cur_stream[i][0] = cur_stream[i][0][how_many:]
if max_word_length is not None:
cur_stream[i][1] = cur_stream[i][1][how_many:]
if no_more_data:
# There is no more data. Note: this will not return data
# for the incomplete batch
break
X = {
'token_ids': inputs,
'tokens_characters': char_inputs,
'next_token_id': targets
}
yield X
class LMDataset(object):
"""
Hold a language model dataset.
A dataset is a list of tokenized files. Each file contains one sentence
per line. Each sentence is pre-tokenized and white space joined.
"""
def __init__(self,
filepattern,
vocab,
reverse=False,
test=False,
shuffle_on_load=False):
'''
filepattern = a glob string that specifies the list of files.
vocab = an instance of Vocabulary or UnicodeCharsVocabulary
reverse = if True, then iterate over tokens in each sentence in reverse
test = if True, then iterate through all data once then stop.
Otherwise, iterate forever.
shuffle_on_load = if True, then shuffle the sentences after loading.
'''
self._vocab = vocab
self._all_shards = glob.glob(filepattern)
print('Found %d shards at %s' % (len(self._all_shards), filepattern))
if test:
self._all_shards = list(np.random.choice(self._all_shards, size=4))
print('sampled %d shards at %s' % (len(self._all_shards), filepattern))
self._shards_to_choose = []
self._reverse = reverse
self._test = test
self._shuffle_on_load = shuffle_on_load
self._use_char_inputs = hasattr(vocab, 'encode_chars')
self._ids = self._load_random_shard()
def _choose_random_shard(self):
if len(self._shards_to_choose) == 0:
self._shards_to_choose = list(self._all_shards)
random.shuffle(self._shards_to_choose)
shard_name = self._shards_to_choose.pop()
return shard_name
def _load_random_shard(self):
"""Randomly select a file and read it."""
if self._test:
if len(self._all_shards) == 0:
# we've loaded all the data
# this will propogate up to the generator in get_batch
# and stop iterating
raise StopIteration
else:
shard_name = self._all_shards.pop()
else:
# just pick a random shard
shard_name = self._choose_random_shard()
ids = self._load_shard(shard_name)
self._i = 0
self._nids = len(ids)
return ids
def _load_shard(self, shard_name):
"""Read one file and convert to ids.
Args:
shard_name: file path.
Returns:
list of (id, char_id) tuples.
"""
print('Loading data from: %s' % shard_name)
with io.open(shard_name, 'r', encoding='utf-8') as f:
sentences_raw = f.readlines()
if self._reverse:
sentences = []
for sentence in sentences_raw:
splitted = sentence.split()
splitted.reverse()
sentences.append(' '.join(splitted))
else:
sentences = sentences_raw
if self._shuffle_on_load:
print('shuffle sentences')
random.shuffle(sentences)
ids = [
self.vocab.encode(sentence, self._reverse)
for sentence in sentences
]
if self._use_char_inputs:
chars_ids = [
self.vocab.encode_chars(sentence, self._reverse)
for sentence in sentences
]
else:
chars_ids = [None] * len(ids)
print('Loaded %d sentences.' % len(ids))
print('Finished loading')
return list(zip(ids, chars_ids))
def get_sentence(self):
while True:
if self._i == self._nids:
self._ids = self._load_random_shard()
ret = self._ids[self._i]
self._i += 1
yield ret
@property
def max_word_length(self):
if self._use_char_inputs:
return self._vocab.max_word_length
else:
return None
def iter_batches(self, batch_size, num_steps):
for X in _get_batch(self.get_sentence(), batch_size, num_steps,
self.max_word_length):
# token_ids = (batch_size, num_steps)
# char_inputs = (batch_size, num_steps, 50) of character ids
# targets = word ID of next word (batch_size, num_steps)
yield X
@property
def vocab(self):
return self._vocab
class BidirectionalLMDataset(object):
def __init__(self, filepattern, vocab, test=False, shuffle_on_load=False):
'''
bidirectional version of LMDataset
'''
self._data_forward = LMDataset(
filepattern,
vocab,
reverse=False,
test=test,
shuffle_on_load=shuffle_on_load)
self._data_reverse = LMDataset(
filepattern,
vocab,
reverse=True,
test=test,
shuffle_on_load=shuffle_on_load)
def iter_batches(self, batch_size, num_steps):
max_word_length = self._data_forward.max_word_length
for X, Xr in six.moves.zip(
_get_batch(self._data_forward.get_sentence(), batch_size,
num_steps, max_word_length),
_get_batch(self._data_reverse.get_sentence(), batch_size,
num_steps, max_word_length)):
for k, v in Xr.items():
X[k + '_reverse'] = v
yield X
class InvalidNumberOfCharacters(Exception):
pass