-
Notifications
You must be signed in to change notification settings - Fork 5
/
data_processing.py
394 lines (363 loc) · 18.2 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os
import sys
import glob
import cv2
import numpy as np
import _pickle as cPickle
from tqdm import tqdm
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
from align import align_nocs_to_depth
OBJ_MODEL_DIR = os.path.join(BASE_DIR, 'data', 'obj_models')
def create_img_list(data_dir):
""" Create train/val/test data list for CAMERA and Real. """
# CAMERA dataset
for subset in ['train', 'val']:
img_list = []
img_dir = os.path.join(data_dir, 'camera', subset)
folder_list = [name for name in os.listdir(img_dir) if os.path.isdir(os.path.join(img_dir, name))]
for i in range(10*len(folder_list)):
folder_id = int(i) // 10
img_id = int(i) % 10
img_path = os.path.join(subset, '{:05d}'.format(folder_id), '{:04d}'.format(img_id))
img_list.append(img_path)
with open(os.path.join(data_dir, 'camera', subset+'_list_all.txt'), 'w') as f:
for img_path in img_list:
f.write("%s\n" % img_path)
# Real dataset
for subset in ['train', 'test']:
img_list = []
img_dir = os.path.join(data_dir, 'real', subset)
folder_list = [name for name in sorted(os.listdir(img_dir)) if os.path.isdir(os.path.join(img_dir, name))]
for folder in folder_list:
img_paths = glob.glob(os.path.join(img_dir, folder, '*_color.png'))
img_paths = sorted(img_paths)
for img_full_path in img_paths:
img_name = os.path.basename(img_full_path)
img_ind = img_name.split('_')[0]
img_path = os.path.join(subset, folder, img_ind)
img_list.append(img_path)
with open(os.path.join(data_dir, 'real', subset+'_list_all.txt'), 'w') as f:
for img_path in img_list:
f.write("%s\n" % img_path)
print('Write all data paths to file done!')
def load_depth(img_path):
""" Load depth image from img_path. """
depth_path = img_path + '_depth.png'
depth = cv2.imread(depth_path, -1)
if len(depth.shape) == 3:
# This is encoded depth image, let's convert
# NOTE: RGB is actually BGR in opencv
depth16 = depth[:, :, 1]*256 + depth[:, :, 2]
depth16 = np.where(depth16==32001, 0, depth16)
depth16 = depth16.astype(np.uint16)
elif len(depth.shape) == 2 and depth.dtype == 'uint16':
depth16 = depth
else:
assert False, '[ Error ]: Unsupported depth type.'
return depth16
def process_data(img_path, depth, subset=None):
""" Load instance masks for the objects in the image. """
mask_path = img_path + '_mask.png'
mask = cv2.imread(mask_path)[:, :, 2]
mask = np.array(mask, dtype=np.int32)
all_inst_ids = sorted(list(np.unique(mask)))
assert all_inst_ids[-1] == 255
del all_inst_ids[-1] # remove background
num_all_inst = len(all_inst_ids)
h, w = mask.shape
coord_path = img_path + '_coord.png'
coord_map = cv2.imread(coord_path)[:, :, :3]
coord_map = coord_map[:, :, (2, 1, 0)]
# flip z axis of coord map
coord_map = np.array(coord_map, dtype=np.float32) / 255
coord_map[:, :, 2] = 1 - coord_map[:, :, 2]
class_ids = []
instance_ids = []
model_list = []
masks = np.zeros([h, w, num_all_inst], dtype=np.uint8)
coords = np.zeros((h, w, num_all_inst, 3), dtype=np.float32)
bboxes = np.zeros((num_all_inst, 4), dtype=np.int32)
scales = np.zeros([num_all_inst, 3], dtype=np.float32)
meta_path = img_path + '_meta.txt'
with open(meta_path, 'r') as f:
i = 0
for line in f:
line_info = line.strip().split(' ')
inst_id = int(line_info[0])
cls_id = int(line_info[1])
# background objects and non-existing objects
if cls_id == 0 or (inst_id not in all_inst_ids):
continue
if len(line_info) == 3:
model_id = line_info[2] # Real scanned objs
if model_id[-3:] == 'npz':
npz_path = os.path.join(OBJ_MODEL_DIR, 'real_val', model_id)
with np.load(npz_path) as npz_file:
scale = npz_file['scale']
else:
bbox_file = os.path.join(OBJ_MODEL_DIR, 'real_'+subset, model_id+'.txt')
scale = np.loadtxt(bbox_file)
scales[i, :] = scale/ (np.linalg.norm(scale)+1e-10)
else:
model_id = line_info[3] # CAMERA objs
bbox_file = os.path.join(OBJ_MODEL_DIR, subset, line_info[2], line_info[3], 'bbox.txt')
bbox = np.loadtxt(bbox_file)
scales[i, :] = bbox[0, :] - bbox[1, :]
# remove one mug instance in CAMERA train due to improper model
if model_id == 'b9be7cfe653740eb7633a2dd89cec754':
continue
# process foreground objects
inst_mask = np.equal(mask, inst_id)
# bounding box
horizontal_indicies = np.where(np.any(inst_mask, axis=0))[0]
vertical_indicies = np.where(np.any(inst_mask, axis=1))[0]
assert horizontal_indicies.shape[0], print(img_path)
x1, x2 = horizontal_indicies[[0, -1]]
y1, y2 = vertical_indicies[[0, -1]]
# x2 and y2 should not be part of the box. Increment by 1.
x2 += 1
y2 += 1
# object occupies full image, rendering error, happens in CAMERA dataset
if np.any(np.logical_or((x2-x1) > 600, (y2-y1) > 440)):
return None, None, None, None, None, None, None
# not enough valid depth observation
final_mask = np.logical_and(inst_mask, depth > 0)
if np.sum(final_mask) < 64:
continue
class_ids.append(cls_id)
instance_ids.append(inst_id)
model_list.append(model_id)
masks[:, :, i] = inst_mask
coords[:, :, i, :] = np.multiply(coord_map, np.expand_dims(inst_mask, axis=-1))
bboxes[i] = np.array([y1, x1, y2, x2])
i += 1
# no valid foreground objects
if i == 0:
return None, None, None, None, None, None, None
masks = masks[:, :, :i]
coords = np.clip(coords[:, :, :i, :], 0, 1)
bboxes = bboxes[:i, :]
scales = scales[:i, :]
return masks, coords, class_ids, instance_ids, model_list, bboxes, scales
def annotate_camera_train(data_dir):
""" Generate gt labels for CAMERA train data. """
camera_train = open(os.path.join(data_dir, 'camera', 'train_list_all.txt')).read().splitlines()
intrinsics = np.array([[577.5, 0, 319.5], [0, 577.5, 239.5], [0, 0, 1]])
valid_img_list = []
for img_path in tqdm(camera_train):
img_full_path = os.path.join(data_dir, 'camera', img_path)
all_exist = os.path.exists(img_full_path + '_color.png') and \
os.path.exists(img_full_path + '_coord.png') and \
os.path.exists(img_full_path + '_depth.png') and \
os.path.exists(img_full_path + '_mask.png') and \
os.path.exists(img_full_path + '_meta.txt')
if not all_exist:
continue
depth = load_depth(img_full_path)
masks, coords, class_ids, instance_ids, model_list, bboxes, sizes = process_data(img_full_path, depth, subset='train')
if instance_ids is None:
continue
# Umeyama alignment of GT NOCS map with depth image
scales, rotations, translations, error_messages, _ = \
align_nocs_to_depth(masks, coords, depth, intrinsics, instance_ids, img_path)
if error_messages:
continue
# write results
gts = {}
gts['class_ids'] = class_ids # int list, 1 to 6
gts['bboxes'] = bboxes # np.array, [[y1, x1, y2, x2], ...]
gts['scales'] = scales.astype(np.float32) # np.array, scale factor from NOCS model to depth observation
gts['sizes'] = sizes.astype(np.float32)
gts['rotations'] = rotations.astype(np.float32) # np.array, R
gts['translations'] = translations.astype(np.float32) # np.array, T
gts['instance_ids'] = instance_ids # int list, start from 1
gts['model_list'] = model_list # str list, model id/name
with open(img_full_path + '_label.pkl', 'wb') as f:
cPickle.dump(gts, f)
valid_img_list.append(img_path)
# write valid img list to file
with open(os.path.join(data_dir, 'camera/train_list.txt'), 'w') as f:
for img_path in valid_img_list:
f.write("%s\n" % img_path)
def annotate_real_train(data_dir):
""" Generate gt labels for Real train data through PnP. """
real_train = open(os.path.join(data_dir, 'real/train_list_all.txt')).read().splitlines()
intrinsics = np.array([[591.0125, 0, 322.525], [0, 590.16775, 244.11084], [0, 0, 1]])
# scale factors for all instances
scale_factors = {}
path_to_size = glob.glob(os.path.join(data_dir, 'obj_models/real_train', '*_norm.txt'))
for inst_path in sorted(path_to_size):
instance = os.path.basename(inst_path).split('.')[0]
bbox_dims = np.loadtxt(inst_path)
scale_factors[instance] = np.linalg.norm(bbox_dims)
valid_img_list = []
for img_path in tqdm(real_train):
img_full_path = os.path.join(data_dir, 'real', img_path)
all_exist = os.path.exists(img_full_path + '_color.png') and \
os.path.exists(img_full_path + '_coord.png') and \
os.path.exists(img_full_path + '_depth.png') and \
os.path.exists(img_full_path + '_mask.png') and \
os.path.exists(img_full_path + '_meta.txt')
if not all_exist:
continue
depth = load_depth(img_full_path)
masks, coords, class_ids, instance_ids, model_list, bboxes, sizes = process_data(img_full_path, depth, subset='train')
if instance_ids is None:
continue
# compute pose
num_insts = len(class_ids)
scales = np.zeros(num_insts)
rotations = np.zeros((num_insts, 3, 3))
translations = np.zeros((num_insts, 3))
for i in range(num_insts):
s = scale_factors[model_list[i]]
mask = masks[:, :, i]
idxs = np.where(mask)
coord = coords[:, :, i, :]
coord_pts = s * (coord[idxs[0], idxs[1], :] - 0.5)
coord_pts = coord_pts[:, :, None]
img_pts = np.array([idxs[1], idxs[0]]).transpose()
img_pts = img_pts[:, :, None].astype(float)
distCoeffs = np.zeros((4, 1)) # no distoration
retval, rvec, tvec = cv2.solvePnP(coord_pts, img_pts, intrinsics, distCoeffs)
assert retval
R, _ = cv2.Rodrigues(rvec)
T = np.squeeze(tvec)
scales[i] = s
rotations[i] = R
translations[i] = T
# write results
gts = {}
gts['class_ids'] = class_ids # int list, 1 to 6
gts['bboxes'] = bboxes # np.array, [[y1, x1, y2, x2], ...]
gts['scales'] = scales.astype(np.float32) # np.array, scale factor from NOCS model to depth observation
gts['sizes'] = sizes.astype(np.float32)
gts['rotations'] = rotations.astype(np.float32) # np.array, R
gts['translations'] = translations.astype(np.float32) # np.array, T
gts['instance_ids'] = instance_ids # int list, start from 1
gts['model_list'] = model_list # str list, model id/name
with open(img_full_path + '_label.pkl', 'wb') as f:
cPickle.dump(gts, f)
valid_img_list.append(img_path)
# write valid img list to file
with open(os.path.join(data_dir, 'real/train_list.txt'), 'w') as f:
for img_path in valid_img_list:
f.write("%s\n" % img_path)
def annotate_test_data(data_dir):
""" Generate gt labels for test data.
Properly copy handle_visibility provided by NOCS gts.
"""
# Statistics:
# test_set missing file bad rendering no (occluded) fg occlusion (< 64 pts)
# val 3792 imgs 132 imgs 1856 (23) imgs 50 insts
# test 0 img 0 img 0 img 2 insts
camera_val = open(os.path.join(data_dir, 'camera', 'val_list_all.txt')).read().splitlines()
real_test = open(os.path.join(data_dir, 'real', 'test_list_all.txt')).read().splitlines()
camera_intrinsics = np.array([[577.5, 0, 319.5], [0, 577.5, 239.5], [0, 0, 1]])
real_intrinsics = np.array([[591.0125, 0, 322.525], [0, 590.16775, 244.11084], [0, 0, 1]])
# compute model size
model_file_path = ['obj_models/camera_val.pkl', 'obj_models/real_test.pkl']
models = {}
for path in model_file_path:
with open(os.path.join(data_dir, path), 'rb') as f:
models.update(cPickle.load(f))
model_sizes = {}
for key in models.keys():
model_sizes[key] = 2 * np.amax(np.abs(models[key]), axis=0)
subset_meta = [('real', real_test, real_intrinsics, 'test'), ('camera', camera_val, camera_intrinsics, 'val')]
for source, img_list, intrinsics, subset in subset_meta:
valid_img_list = []
for img_path in tqdm(img_list):
img_full_path = os.path.join(data_dir, source, img_path)
all_exist = os.path.exists(img_full_path + '_color.png') and \
os.path.exists(img_full_path + '_coord.png') and \
os.path.exists(img_full_path + '_depth.png') and \
os.path.exists(img_full_path + '_mask.png') and \
os.path.exists(img_full_path + '_meta.txt')
if not all_exist:
continue
depth = load_depth(img_full_path)
masks, coords, class_ids, instance_ids, model_list, bboxes, sizes = process_data(img_full_path, depth, subset)
if instance_ids is None:
continue
num_insts = len(instance_ids)
# match each instance with NOCS ground truth to properly assign gt_handle_visibility
nocs_dir = os.path.join(data_dir, 'results/nocs_results')
if source == 'camera':
nocs_path = os.path.join(nocs_dir, 'val', 'results_val_{}_{}.pkl'.format(
img_path.split('/')[-2], img_path.split('/')[-1]))
else:
nocs_path = os.path.join(nocs_dir, 'real_test', 'results_test_{}_{}.pkl'.format(
img_path.split('/')[-2], img_path.split('/')[-1]))
with open(nocs_path, 'rb') as f:
nocs = cPickle.load(f)
gt_class_ids = nocs['gt_class_ids']
gt_bboxes = nocs['gt_bboxes']
gt_sRT = nocs['gt_RTs']
gt_handle_visibility = nocs['gt_handle_visibility']
map_to_nocs = []
for i in range(num_insts):
gt_match = -1
for j in range(len(gt_class_ids)):
if gt_class_ids[j] != class_ids[i]:
continue
if np.sum(np.abs(bboxes[i] - gt_bboxes[j])) > 5:
continue
# match found
gt_match = j
break
# check match validity
assert gt_match > -1, print(img_path, instance_ids[i], 'no match for instance')
assert gt_match not in map_to_nocs, print(img_path, instance_ids[i], 'duplicate match')
map_to_nocs.append(gt_match)
# copy from ground truth, re-label for mug category
handle_visibility = gt_handle_visibility[map_to_nocs]
sizes = np.zeros((num_insts, 3))
poses = np.zeros((num_insts, 4, 4))
scales = np.zeros(num_insts)
rotations = np.zeros((num_insts, 3, 3))
translations = np.zeros((num_insts, 3))
for i in range(num_insts):
gt_idx = map_to_nocs[i]
sizes[i] = model_sizes[model_list[i]]
sRT = gt_sRT[gt_idx]
s = np.cbrt(np.linalg.det(sRT[:3, :3]))
R = sRT[:3, :3] / s
T = sRT[:3, 3]
# used for test during training
scales[i] = s
rotations[i] = R
translations[i] = T
# used for evaluation
sRT = np.identity(4, dtype=np.float32)
sRT[:3, :3] = s * R
sRT[:3, 3] = T
poses[i] = sRT
# write results
gts = {}
gts['class_ids'] = np.array(class_ids) # int list, 1 to 6
gts['bboxes'] = bboxes # np.array, [[y1, x1, y2, x2], ...]
gts['instance_ids'] = instance_ids # int list, start from 1
gts['model_list'] = model_list # str list, model id/name
gts['sizes'] = sizes # 3D size of NOCS model
gts['scales'] = scales.astype(np.float32) # np.array, scale factor from NOCS model to depth observation
gts['rotations'] = rotations.astype(np.float32) # np.array, R
gts['translations'] = translations.astype(np.float32) # np.array, T
gts['poses'] = poses.astype(np.float32) # np.array
gts['handle_visibility'] = handle_visibility # handle visibility of mug
with open(img_full_path + '_label.pkl', 'wb') as f:
cPickle.dump(gts, f)
valid_img_list.append(img_path)
# write valid img list to file
with open(os.path.join(data_dir, source, subset+'_list.txt'), 'w') as f:
for img_path in valid_img_list:
f.write("%s\n" % img_path)
if __name__ == '__main__':
data_dir = os.path.join(BASE_DIR, 'data')
# create list for all data
create_img_list(data_dir)
# annotate dataset and re-write valid data to list
annotate_camera_train(data_dir)
annotate_real_train(data_dir)
# annotate_test_data(data_dir)