-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
215 lines (166 loc) · 6.52 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import Sampler
import const
# 0, batch * 1, batch * 2 ...
class BatchIntervalSampler(Sampler):
def __init__(self, data_length, batch_size):
# data length 가 batch size 로 나뉘게 만듦
if data_length % batch_size != 0:
data_length = data_length - (data_length % batch_size)
self.indices =[]
# print(data_length)
batch_group_interval = int(data_length / batch_size)
for group_idx in range(batch_group_interval):
for local_idx in range(batch_size):
self.indices.append(group_idx + local_idx * batch_group_interval)
# print('sampler init', self.indices)
def __iter__(self):
return iter(self.indices)
def __len__(self):
return len(self.indices)
def record_net_data_stats(label_temp, data_idx_map):
net_class_count = {}
net_data_count= {}
for net_i, dataidx in data_idx_map.items():
unq, unq_cnt = np.unique(label_temp[dataidx], return_counts=True)
tmp = {unq[i]: unq_cnt[i] for i in range(len(unq))}
net_class_count[net_i] = tmp
net_data_count[net_i] = len(dataidx)
print('Data statistics: %s' % str(net_class_count))
return net_class_count, net_data_count
def GetCanDataset(total_edge, fold_num, packet_num, csv_path, txt_path):
csv = pd.read_csv(csv_path)
txt = open(txt_path, "r")
lines = txt.read().splitlines()
idx = 0
datum = []
label_temp = []
# [cur_idx ~ cur_idx + packet_num)
while idx + packet_num - 1 < len(csv) // 2:
line = lines[idx + packet_num - 1]
if not line:
break
if line.split(' ')[1] == 'R':
datum.append((idx, 1))
label_temp.append(1)
else:
datum.append((idx, 0))
label_temp.append(0)
idx += 1
if (idx % 1000000 == 0):
print(idx)
fold_length = int(len(label_temp) / 5)
train_datum = []
train_label_temp = []
for i in range(5):
if i != fold_num:
train_datum += datum[i*fold_length:(i+1)*fold_length]
train_label_temp += label_temp[i*fold_length:(i+1)*fold_length]
else:
test_datum = datum[i*fold_length:(i+1)*fold_length]
N = len(train_label_temp)
train_label_temp = np.array(train_label_temp)
proportions = np.random.dirichlet(np.repeat(1, total_edge))
proportions = np.cumsum(proportions)
idx_batch = [[] for _ in range(total_edge)]
data_idx_map = {}
prev = 0.0
for j in range(total_edge):
idx_batch[j] = [idx for idx in range(int(prev * N), int(proportions[j] * N))]
prev = proportions[j]
data_idx_map[j] = idx_batch[j]
_, net_data_count = record_net_data_stats(train_label_temp, data_idx_map)
return CanDataset(csv, train_datum, packet_num), data_idx_map, net_data_count, CanDataset(csv, test_datum, packet_num, False)
class CanDataset(Dataset):
def __init__(self, csv, datum, packet_num, is_train=True):
self.csv = csv
self.datum = datum
self.packet_num = packet_num
if is_train:
self.idx_map = []
else:
self.idx_map = [idx for idx in range(len(self.datum))]
def __len__(self):
return len(self.idx_map) - self.packet_num + 1
def set_idx_map(self, data_idx_map):
self.idx_map = data_idx_map
def __getitem__(self, idx):
# [cur_idx ~ cur_idx + packet_num)
start_i = self.datum[self.idx_map[idx]][0]
is_regular = self.datum[self.idx_map[idx]][1]
packet = np.zeros((const.CAN_DATA_LEN * self.packet_num))
for next_i in range(self.packet_num):
data_len = self.csv.iloc[start_i + next_i, 1]
for j in range(data_len):
data_value = int(self.csv.iloc[start_i + next_i, 2 + j], 16) / 255.0
packet[j + const.CAN_DATA_LEN * next_i] = data_value
return torch.from_numpy(packet).float(), is_regular
def GetCanDatasetCNN(total_edge, fold_num, csv_path, txt_path):
csv = pd.read_csv(csv_path)
txt = open(txt_path, "r")
lines = txt.read().splitlines()
idx = 0
datum = []
label_temp = []
while idx < len(csv) // 2:
line = lines[idx]
if not line:
break
if line.split(' ')[1] == 'R':
datum.append((idx, 1))
label_temp.append(1)
else:
datum.append((idx, 0))
label_temp.append(0)
idx += 1
if (idx % 1000000 == 0):
print(idx)
fold_length = int(len(label_temp) / 5)
train_datum = []
train_label_temp = []
for i in range(5):
if i != fold_num:
train_datum += datum[i*fold_length:(i+1)*fold_length]
train_label_temp += label_temp[i*fold_length:(i+1)*fold_length]
else:
test_datum = datum[i*fold_length:(i+1)*fold_length]
N = len(train_label_temp)
train_label_temp = np.array(train_label_temp)
proportions = np.random.dirichlet(np.repeat(1, total_edge))
proportions = np.cumsum(proportions)
idx_batch = [[] for _ in range(total_edge)]
data_idx_map = {}
prev = 0.0
for j in range(total_edge):
idx_batch[j] = [idx for idx in range(int(prev * N), int(proportions[j] * N))]
prev = proportions[j]
data_idx_map[j] = idx_batch[j]
_, net_data_count = record_net_data_stats(train_label_temp, data_idx_map)
return CanDatasetCNN(csv, train_datum), data_idx_map, net_data_count, CanDatasetCNN(csv, test_datum, False)
class CanDatasetCNN(Dataset):
def __init__(self, csv, datum, is_train=True):
self.csv = csv
self.datum = datum
if is_train:
self.idx_map = []
else:
self.idx_map = [idx for idx in range(len(self.datum))]
def __len__(self):
return len(self.idx_map)
def set_idx_map(self, data_idx_map):
self.idx_map = data_idx_map
def __getitem__(self, idx):
start_i = self.datum[self.idx_map[idx]][0]
is_regular = self.datum[self.idx_map[idx]][1]
packet = np.zeros((1, const.CNN_FRAME_LEN, const.CNN_FRAME_LEN))
for i in range(const.CNN_FRAME_LEN):
data_len = self.csv.iloc[start_i + i, 1]
for j in range(data_len):
k = int(self.csv.iloc[start_i + i, 2 + j], 16) / 255.0
packet[0][i][j] = k
return torch.from_numpy(packet).float(), is_regular
if __name__ == "__main__":
pass