-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualise.py
133 lines (99 loc) · 3.93 KB
/
visualise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torchvision.utils as utils
from torchbearer.callbacks import Callback
def red_square(s, width=2):
canvas = torch.zeros(3, s, s)
canvas[0, :, :width] = 1.0
canvas[0, :width] = 1.0
canvas[0, :, s - width] = 1.0
canvas[0, s - width] = 1.0
return canvas
class StagesGrid(Callback):
def __init__(self, path, key, num_images):
self.path = path
self.key = key
self.num_images = num_images
self.done=False
def on_step_validation(self, state):
if not self.done:
data = state[self.key].data
if len(data.size()) == 4:
data = data.unsqueeze(2)
if state['t'] == 0:
remaining = self.num_images if self.num_images < data.size(0) else data.size(0)
self._data = data[:remaining].cpu()
else:
remaining = self.num_images - self._data.size(0)
if remaining > data.size(0):
remaining = data.size(0)
self._data = torch.cat((self._data, data[:remaining].cpu()), dim=0)
if self._data.size(0) >= self.num_images:
image_data = [] #torch.zeros(self._data.size(0) * self._data.size(1), self._data.size(2), self._data.size(3), self._data.size(4))
for i in range(self._data.size(1)):
for j in range(self._data.size(0)):
image_data.append(self._data[j][i].unsqueeze(0))
image_data = torch.cat(image_data, dim=0)
utils.save_image(image_data, self.path, nrow=self.num_images, pad_value=1)
self.done = True
class WrongImages(Callback):
def __init__(self,
name,
key='y_pred',
pred='class',
target='y_true',
write_each_epoch=True,
num_images=50,
nrow=10,
padding=2,
normalize=False,
range=None,
scale_each=False,
pad_value=0):
self.name = name
self.key = key
self.pred = pred
self.target = target
self.write_each_epoch = write_each_epoch
self.num_images = num_images
self.nrow = nrow
self.padding = padding
self.normalize = normalize
self.range = range
self.scale_each = scale_each
self.pad_value = pad_value
self.done = False
self.preds = []
self.targets = []
self._data = None
def on_step_validation(self, state):
pred = state[self.pred]
target = state[self.target]
if not self.done and not torch.max(pred, 1)[1][0] == target[0]:
self.preds.append(torch.max(pred, 1)[1][0].item())
self.targets.append(target[0].item())
data = state[self.key].data.clone()
if len(data.size()) == 3:
data = data.unsqueeze(1)
if self._data is None:
remaining = self.num_images if self.num_images < data.size(0) else data.size(0)
self._data = data[:remaining].cpu()
else:
remaining = self.num_images - self._data.size(0)
if remaining > data.size(0):
remaining = data.size(0)
self._data = torch.cat((self._data, data[:remaining].cpu()), dim=0)
if self._data.size(0) >= self.num_images:
utils.save_image(
self._data,
self.name,
nrow=self.nrow,
padding=self.padding,
normalize=self.normalize,
range=self.range,
scale_each=self.scale_each,
pad_value=self.pad_value
)
self.done = True
def on_end_epoch(self, state):
if self.write_each_epoch:
self.done = False