-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar100.py
49 lines (40 loc) · 1.46 KB
/
cifar100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import torch
import torchvision
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import transforms
class CIFAR100:
def __init__(self, args):
super(CIFAR100, self).__init__()
data_root = os.path.join(args.data, "cifar100")
use_cuda = torch.cuda.is_available()
# Data loading code
kwargs = {"num_workers": args.workers, "pin_memory": True} if use_cuda else {}
normalize = transforms.Normalize(
mean=[0.491, 0.482, 0.447], std=[0.247, 0.243, 0.262]
)
train_dataset = torchvision.datasets.CIFAR100(
root=data_root,
train=True,
download=True,
transform=transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
),
)
self.train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs
)
test_dataset = torchvision.datasets.CIFAR100(
root=data_root,
train=False,
download=True,
transform=transforms.Compose([transforms.ToTensor(), normalize]),
)
self.val_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.batch_size, shuffle=False, **kwargs
)