forked from kclip/meta-autoencoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
244 lines (214 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
import argparse
from data_gen.data_set import channel_set_gen
from training.train import test_training
from training.test import test_per_channel_per_snr
from nets.auto_encoder import dnn
from torch.utils.tensorboard import SummaryWriter
from training.meta_train import multi_task_learning
import pickle
import scipy.io as sio
import datetime
import os
def parse_args():
parser = argparse.ArgumentParser(description='end_to_end-meta')
# bit num (k), channel uses (n), tap number (L), number of pilots (P), Eb/N0
parser.add_argument('--bit_num', type=int, default=4, help='number of bits')
parser.add_argument('--channel_num', type=int, default=4, help='number of channel uses')
parser.add_argument('--tap_num', type=int, default=3, help='..')
parser.add_argument('--mb_size', type=int, default=16, help='minibatch size')
parser.add_argument('--mb_size_meta_train', type=int, default=16,
help='minibatch size during meta-training (this can be useful for decreasing pilots)')
parser.add_argument('--mb_size_meta_test', type=int, default=16,
help='minibatch size for query set (this can be useful for decreasing pilots)')
parser.add_argument('--Eb_over_N_db', type=float, default=15,
help='energy per bit to noise power spectral density ratio')
# paths
parser.add_argument('--path_for_common_dir', dest='path_for_common_dir',
default='default_folder/default_subfolder/', type=str)
parser.add_argument('--path_for_meta_training_channels', dest='path_for_meta_training_channels', default=None,
type=str)
parser.add_argument('--path_for_test_channels', dest='path_for_test_channels', default=None, type=str)
parser.add_argument('--path_for_meta_trained_net', dest='path_for_meta_trained_net', default=None, type=str)
# neural network architecture (number of neurons for hidden layer)
parser.add_argument('--num_neurons_encoder', type=int, default=None, help='number of neuron in hidden layer in encoder')
parser.add_argument('--num_neurons_decoder', type=int, default=None, help='number of neuron in hidden layer in decoder')
# whether to use bias and relu (if not relu: tanh)
parser.add_argument('--if_not_bias', dest='if_bias', action='store_false', default=True)
parser.add_argument('--if_not_relu', dest='if_relu', action='store_false', default=True)
# RTN
parser.add_argument('--if_RTN', dest='if_RTN', action='store_true', default=False)
# in case of running on gpu, index for cuda device
parser.add_argument('--cuda_ind', type=int, default=0, help='index for cuda device')
# experiment details (hyperparameters, number of data for calculating performance and for meta-training
parser.add_argument('--lr_testtraining', type=float, default=0.001, help='lr for adaptation to new channel')
parser.add_argument('--lr_meta_update', type=float, default=0.01, help='lr during meta-training: outer loop (update initialization) lr')
parser.add_argument('--lr_meta_inner', type=float, default=0.1, help='lr during meta-training: inner loop (local adaptation) lr')
parser.add_argument('--test_size', type=int, default=1000000, help='number of messages to calculate BLER for test (new channel)')
parser.add_argument('--num_channels_meta', type=int, default=100, help='number of meta-training channels (K)')
parser.add_argument('--num_channels_test', type=int, default=20, help='number of new channels for test (to get average over BLER)')
parser.add_argument('--tasks_per_metaupdate', type=int, default=20, help='number of meta-training channels considered in one meta-update')
parser.add_argument('--num_meta_local_updates', type=int, default=1, help='number of local adaptation in meta-training')
parser.add_argument('--num_epochs_meta_train', type=int, default=10000,
help='number epochs for meta-training')
# if run for joint training, if false: meta-learning
parser.add_argument('--if_joint_training', dest='if_joint_training', action='store_true', default=False) # else: meta-learning for multi-task learning
# whether to use Adam optimizer to adapt to a new channel
parser.add_argument('--if_not_test_training_adam', dest='if_test_training_adam', action='store_false',
default=True)
# if run on toy example (Fig. 2 and 3)
parser.add_argument('--if_toy', dest='if_toy', action='store_true',
default=False)
# to run on a more realistic example (Fig. 4)
parser.add_argument('--if_RBF', dest='if_RBF', action='store_true',
default=False)
parser.add_argument('--test_per_adapt_fixed_Eb_over_N_value', type=int, default=15,
help='Eb/N0 in db for test')
# desinged for maml: sgd during args.num_meta_local_updates with args.lr_meta_inner and then follow Adam optimizer with args.lr_testtraining
parser.add_argument('--if_adam_after_sgd', dest='if_adam_after_sgd', action='store_true',
default=False)
args = parser.parse_args()
args.device = torch.device("cuda:" + str(args.cuda_ind) if torch.cuda.is_available() else "cpu")
if args.num_neurons_encoder == None: # unless specified, set number of hidden neurons to be same as the number of possible messages
args.num_neurons_encoder = pow(2,args.bit_num)
if args.num_neurons_decoder == None:
args.num_neurons_decoder = pow(2, args.bit_num)
if args.if_test_training_adam == False:
args.if_adam_after_sgd = False
if args.if_toy == True:
print('running for toy scenario')
args.bit_num = 2
args.channel_num = 1
args.tap_num = 1
args.mb_size = 4
args.mb_size_meta_train = 4
args.mb_size_meta_test = 4
args.num_channels_meta = 20
args.num_neurons_encoder = 4
args.num_neurons_decoder = 4
elif args.if_RBF == True:
print('running for a more realistic scenario')
args.bit_num = 4
args.channel_num = 4
args.tap_num = 3
args.mb_size = 16
args.mb_size_meta_train = 16
args.mb_size_meta_test = 16
args.num_channels_meta = 100
args.num_neurons_encoder = 16
args.num_neurons_decoder = 16
else:
print('running on custom environment')
print('Running on device: {}'.format(args.device))
return args
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
curr_time = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
common_dir = './' + args.path_for_common_dir + curr_time + '/'
PATH_before_adapt = common_dir + 'saved_model/' + 'before_adapt/' + 'init_net'
PATH_meta_intermediate = common_dir + 'saved_model/' + 'during_meta_training/' + 'epochs/'
os.makedirs(common_dir + 'saved_model/' + 'before_adapt/')
os.makedirs(common_dir + 'saved_model/' + 'after_adapt/')
os.makedirs(PATH_meta_intermediate)
os.makedirs(common_dir + 'meta_training_channels/')
os.makedirs(common_dir + 'test_channels/')
os.makedirs(common_dir + 'test_result/')
dir_meta_training = common_dir + 'TB/' + 'meta_training'
writer_meta_training = SummaryWriter(dir_meta_training)
dir_during_adapt = common_dir + 'TB/' + 'during_adapt/'
test_Eb_over_N_range = [args.test_per_adapt_fixed_Eb_over_N_value]
test_adapt_range = [0, 1, 2, 5, 10, 100, 200, 1000, 10000]
if len(test_Eb_over_N_range) > 1:
assert len(test_adapt_range) == 1
if len(test_adapt_range) > 1:
assert len(test_Eb_over_N_range) == 1
test_result_all_PATH = common_dir + 'test_result/' + 'test_result.mat'
save_test_result_dict = {}
actual_channel_num = args.channel_num * 2
net = dnn(M=pow(2, args.bit_num), num_neurons_encoder=args.num_neurons_encoder, n=actual_channel_num, n_inv_filter = args.tap_num,
num_neurons_decoder=args.num_neurons_decoder, if_bias=args.if_bias, if_relu=args.if_relu, if_RTN=args.if_RTN)
if torch.cuda.is_available():
net = net.to(args.device)
net_for_testtraining = dnn(M=pow(2, args.bit_num), num_neurons_encoder=args.num_neurons_encoder, n=actual_channel_num, n_inv_filter = args.tap_num,
num_neurons_decoder=args.num_neurons_decoder, if_bias=args.if_bias, if_relu=args.if_relu, if_RTN=args.if_RTN)
if torch.cuda.is_available():
net_for_testtraining = net_for_testtraining.to(args.device)
Eb_over_N = pow(10, (args.Eb_over_N_db/10))
R = args.bit_num/args.channel_num
noise_var = 1 / (2 * R * Eb_over_N)
Noise = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(actual_channel_num), noise_var * torch.eye(actual_channel_num))
if args.path_for_meta_training_channels is None:
print('generate meta-training channels')
h_list_meta = channel_set_gen(args.num_channels_meta, args.tap_num, args.if_toy)
h_list_meta_path = common_dir + 'meta_training_channels/' + 'training_channels.pckl'
f_meta_channels = open(h_list_meta_path, 'wb')
pickle.dump(h_list_meta, f_meta_channels)
f_meta_channels.close()
else:
print('load previously generated channels')
h_list_meta_path = args.path_for_meta_training_channels + '/' + 'training_channels.pckl'
f_meta_channels = open(h_list_meta_path, 'rb')
h_list_meta = pickle.load(f_meta_channels)
f_meta_channels.close()
if args.path_for_meta_trained_net is None:
if args.if_joint_training:
print('start joint training')
else:
print('start meta-training')
multi_task_learning(args, net, h_list_meta, writer_meta_training, Noise)
torch.save(net.state_dict(), PATH_before_adapt)
else:
print('load previously saved autoencoder')
PATH_before_adapt = args.path_for_meta_trained_net
if args.path_for_test_channels is None:
print('generate test channels')
h_list_test = channel_set_gen(args.num_channels_test, args.tap_num, args.if_toy)
h_list_test_path = common_dir + 'test_channels/' + 'test_channels.pckl'
f_test_channels = open(h_list_test_path, 'wb')
pickle.dump(h_list_test, f_test_channels)
f_test_channels.close()
else:
print('load previously generated channels')
h_list_test_path = args.path_for_test_channels + '/' + 'test_channels.pckl'
f_test_channels = open(h_list_test_path, 'rb')
h_list_test = pickle.load(f_test_channels)
f_test_channels.close()
if len(h_list_test) > args.num_channels_test:
h_list_test = h_list_test[:args.num_channels_test]
print('used test channels', h_list_test)
dir_test = common_dir + 'TB/' + 'test'
writer_test = SummaryWriter(dir_test)
print('start adaptation with test set')
if_val = False
total_block_error_rate = torch.zeros(args.num_channels_test, len(test_Eb_over_N_range), len(test_adapt_range))
ind_adapt_steps = 0
for adapt_steps in test_adapt_range:
print('curr adaptation: ', adapt_steps)
os.mkdir(common_dir + 'saved_model/' + 'after_adapt/' + str(adapt_steps) + '_adapt_steps/')
os.mkdir(common_dir + 'test_result/' + str(adapt_steps) + '_adapt_steps/')
test_result_per_adapt_steps = common_dir + 'test_result/' + str(adapt_steps) + '_adapt_steps/' + 'test_result.mat'
save_test_result_dict_per_adapt_steps = {}
block_error_rate = torch.zeros(args.num_channels_test, len(test_Eb_over_N_range))
ind_h = 0
for h in h_list_test:
print('current channel ind', ind_h)
PATH_after_adapt = common_dir + 'saved_model/' + 'after_adapt/' + str(adapt_steps) + '_adapt_steps/'+ str(ind_h) + 'th_adapted_net'
writer_per_test_channel = []
test_training(args, h, net_for_testtraining, Noise, PATH_before_adapt, PATH_after_adapt, adapt_steps)
# test
ind_snr = 0
for test_snr in test_Eb_over_N_range:
block_error_rate_per_snr_per_channel = test_per_channel_per_snr(args, h, net_for_testtraining, test_snr, actual_channel_num, PATH_after_adapt, if_val)
block_error_rate[ind_h, ind_snr] = block_error_rate_per_snr_per_channel
total_block_error_rate[ind_h, ind_snr, ind_adapt_steps] = block_error_rate_per_snr_per_channel
ind_snr += 1
ind_h += 1
ind_snr = 0
save_test_result_dict_per_adapt_steps['block_error_rate'] = block_error_rate.data.numpy()
sio.savemat(test_result_per_adapt_steps, save_test_result_dict_per_adapt_steps)
writer_test.add_scalar('average (h) block error rate per adaptation steps', torch.mean(block_error_rate[:, :]), adapt_steps)
ind_adapt_steps += 1
save_test_result_dict['block_error_rate_total'] = total_block_error_rate.data.numpy()
sio.savemat(test_result_all_PATH, save_test_result_dict)