-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOrganism.cpp
672 lines (541 loc) · 19.7 KB
/
Organism.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
// ***************************************************************************************************************
//
// Mini-Aevol is a reduced version of Aevol -- An in silico experimental evolution platform
//
// ***************************************************************************************************************
//
// Copyright: See the AUTHORS file provided with the package or <https://gitlab.inria.fr/rouzaudc/mini-aevol>
// Web: https://gitlab.inria.fr/rouzaudc/mini-aevol
// E-mail: See <jonathan.rouzaud-cornabas@inria.fr>
// Original Authors : Jonathan Rouzaud-Cornabas
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ***************************************************************************************************************
#include <cstring>
#include "Organism.h"
#include "ExpManager.h"
#include <iostream>
using namespace std;
/**
* Constructor to generate a random organism (i.e. an organism with a random DNA)
*
* @param exp_m : Related ExpManager object
* @param length : Length of the generated random DNA
* @param indiv_id : Unique Identification Number
*/
Organism::Organism(ExpManager* exp_m, int length, int indiv_id) {
exp_m_ = exp_m;
count_prom = 0;
rna_count_ = 0;
auto rng = exp_m->rng_->gen(indiv_id, Threefry::MUTATION);
dna_ = new Dna(length, rng);
parent_length_ = length;
indiv_id_ = indiv_id;
}
/**
* Create an organism with a given genome
*
* @param exp_m : Related ExpManager object
* @param genome : Genome to assign to the organism
* @param indiv_id : Unique Identification Number
*/
Organism::Organism(ExpManager *exp_m, char* genome, int indiv_id) {
exp_m_ = exp_m;
count_prom = 0;
rna_count_ = 0;
dna_ = new Dna(genome,strlen(genome));
parent_length_ = strlen(genome);
indiv_id_ = indiv_id;
}
/**
* Constructor to create a clone of a given Organism
*
* @param exp_m : Related ExpManager object
* @param clone : The organism to clone
*/
Organism::Organism(ExpManager *exp_m, std::shared_ptr<Organism> clone) {
exp_m_ = exp_m;
count_prom = 0;
rna_count_ = 0;
parent_length_ = clone->parent_length_;
dna_ = new Dna(*(clone->dna_));
for (const auto& prom : clone->promoters) {
if (prom.second != nullptr) {
auto prom_copy = new Promoter(prom.second->pos, prom.second->error);
promoters[count_prom] = prom_copy;
prom_pos[prom_copy->pos] = count_prom;
count_prom++;
}
}
}
/**
* Create an Organism from a backup/checkpointing file
*
* @param exp_m : Related ExpManager object
* @param backup_file : gzFile to read from
*/
Organism::Organism(ExpManager *exp_m, gzFile backup_file) {
exp_m_ = exp_m;
count_prom = 0;
rna_count_ = 0;
load(backup_file);
}
/**
* Destructor of an organism
*/
Organism::~Organism() {
for (auto prom : promoters) {
delete(prom.second);
}
promoters.clear();
prom_pos.clear();
for (auto rna : rnas) {
delete(rna);
}
rnas.clear();
for (auto prot : proteins) {
delete(prot);
}
proteins.clear();
terminators.clear();
delete dna_;
}
/**
* Save the organism to backup/checkpointing file
*
* @param backup_file : where to the save the organism
*/
void Organism::save(gzFile backup_file) {
// gzwrite(backup_file,&indiv_id_,sizeof(indiv_id_));
// gzwrite(backup_file,&parent_id_,sizeof(parent_id_));
// gzwrite(backup_file,&global_id,sizeof(global_id));
//
// gzwrite(backup_file, &parent_length_, sizeof(parent_length_));
//
// dna_->save(backup_file);
}
/**
* Load the organism from backup/checkpointing file
*
* @param backup_file : from where restore the organism
*/
void Organism::load(gzFile backup_file) {
gzread(backup_file,&indiv_id_,sizeof(indiv_id_));
gzread(backup_file,&parent_id_,sizeof(parent_id_));
gzread(backup_file,&global_id,sizeof(global_id));
int parent_length;
gzread(backup_file,&parent_length,sizeof(parent_length));
dna_ = new Dna();
dna_->load(backup_file);
}
/**
* Reset the stats variable (used at the beginning of a generation when an organism is a perfect clone of its parent)
*/
void Organism::reset_stats() {
nb_genes_activ = 0;
nb_genes_inhib = 0;
nb_func_genes = 0;
nb_non_func_genes = 0;
nb_coding_RNAs = 0;
nb_non_coding_RNAs = 0;
}
/**
* Replace the sequence of the DNA of the organism at a given position by a given sequence
*
* @param pos : where to replace the DNA by the given sequence
* @param seq : the sequence itself
* @param seq_length : length of the sequence
*/
void Organism::replace(int pos, char* seq, int seq_length) {
// Invert the sequence between positions 'first' and 'last'
// Check pos value
assert(pos >= 0 && pos < dna_->length());
// If the sequence's length was not provided, compute it
if (seq_length == -1) {
seq_length = strlen(seq);
}
// Check that the sequence is contiguous
assert(pos + seq_length <= dna_->length());
// Perform the replacement
memcpy(&dna_[pos], seq, seq_length * sizeof(char));
}
/**
* Switch the DNA base-pair at a given position
*
* @param pos : the position where to switch the base-pair
* @return
*/
bool Organism::do_switch(int pos) {
dna_->do_switch(pos);
// Remove promoters containing the switched base
remove_promoters_around(pos, mod(pos + 1, length()));
// Look for potential new promoters containing the switched base
if (length() >= PROM_SIZE)
look_for_new_promoters_around(pos, mod(pos + 1, length()));
return true;
}
/**
* Apply all the mutation events of the organism on its DNA
*/
void Organism::apply_mutations() {
MutationEvent *repl;
do {
repl = exp_m_->
dna_mutator_array_[indiv_id_]->generate_next_mutation(length());
if (repl != nullptr) {
switch (repl->type()) {
case DO_SWITCH:
do_switch(repl->pos_1());
nb_swi_++;
nb_mut_++;
break;
}
}
} while (exp_m_->dna_mutator_array_[indiv_id_]->mutation_available() > 0);
}
/**
Optimize promoters search
**/
void Organism::remove_promoters_around(int32_t pos) {
if (dna_->length() >= PROM_SIZE) {
remove_promoters_starting_between(mod(pos - PROM_SIZE + 1,
dna_->length()),
pos);
}
else {
remove_all_promoters();
}
}
void Organism::remove_promoters_around(int32_t pos_1, int32_t pos_2) {
if (mod(pos_1 - pos_2, dna_->length()) >= PROM_SIZE) {
remove_promoters_starting_between(mod(pos_1 - PROM_SIZE + 1,
dna_->length()),
pos_2);
}
else {
remove_all_promoters();
}
}
void Organism::move_all_promoters_after(int32_t pos, int32_t delta_pos) {
std::map<int32_t,int32_t> tmp_prom;
for (auto it = prom_pos.lower_bound(pos), nextit=it;
it != prom_pos.end();
it = nextit) {
int32_t new_pos = mod(it->first + delta_pos, dna_->length());
int32_t prom_idx = it->second;
promoters[it->second]->pos = new_pos;
nextit = next(it);
if (tmp_prom.find(new_pos) == tmp_prom.end()) {
tmp_prom[new_pos] = prom_idx;
} else {
promoters.erase(it->second);
}
prom_pos.erase(it);
}
for (auto to_insert : tmp_prom) {
if (prom_pos.find(to_insert.first) == prom_pos.end()) {
prom_pos[to_insert.first] = to_insert.second;
} else {
promoters.erase(to_insert.second);
}
}
}
void Organism::look_for_new_promoters_around(int32_t pos_1, int32_t pos_2) {
if (dna_->length() >= PROM_SIZE) {
look_for_new_promoters_starting_between(
mod(pos_1 - PROM_SIZE + 1,
dna_->length()), pos_2);
}
}
void Organism::look_for_new_promoters_around(int32_t pos) {
if (dna_->length() >= PROM_SIZE) {
look_for_new_promoters_starting_between(
mod(pos - PROM_SIZE + 1, dna_->length()),
pos);
}
}
void Organism::insert_promoters_at(std::list<Promoter*>& promoters_to_insert, int32_t pos) {
if (promoters_to_insert.size() <= 0) {
return;
}
// Insert the promoters in the individual's RNA list
for (auto &to_insert: promoters_to_insert) {
int prev_pos = to_insert->pos;
// Update promoter position
to_insert->pos = mod(to_insert->pos + pos, dna_->length());
if (prom_pos.find(to_insert->pos) == prom_pos.end()) {
int prom_idx = count_prom;
count_prom = count_prom + 1;
promoters[prom_idx] = to_insert;
prom_pos[to_insert->pos] = prom_idx;
}
}
}
void Organism::duplicate_promoters_included_in(int32_t pos_1,
int32_t pos_2,
std::list<Promoter*>& duplicated_promoters) {
// 1) Get promoters to be duplicated
std::list<Promoter *> retrieved_promoters = {};
promoters_included_in(pos_1, pos_2, retrieved_promoters);
// 2) Set RNAs' position as their position on the duplicated segment
for (auto &prom : retrieved_promoters) {
// Make a copy of current RNA inside container
duplicated_promoters.push_back(new Promoter(prom));
// Set RNA's position as it's position on the duplicated segment
duplicated_promoters.back()->pos = mod(duplicated_promoters.back()->pos - pos_1,
dna_->length());
}
}
void Organism::extract_promoters_included_in(int32_t pos_1,
int32_t pos_2,
std::list<Promoter*>& extracted_promoters) {
if (pos_2 - pos_1 < PROM_SIZE) {
return;
}
extract_promoters_starting_between(pos_1, pos_2 - PROM_SIZE + 1,
extracted_promoters);
}
void Organism::insert_promoters(std::list<Promoter*>& promoters_to_insert) {
if (promoters_to_insert.size() <= 0) {
return;
}
// Insert the promoters in the individual's RNA list
for (auto& to_insert: promoters_to_insert) {
if (prom_pos.find(to_insert->pos) == prom_pos.end()) {
int prom_idx = count_prom;
count_prom = count_prom + 1;
promoters[prom_idx] = to_insert;
prom_pos[to_insert->pos] = prom_idx;
}
}
}
void Organism::remove_all_promoters() {
prom_pos.clear();
for (auto it = promoters.begin(),
nextit = it;
it != promoters.end();
it = nextit) {
delete it->second;
nextit = next(it);
promoters.erase(it);
}
promoters.clear();
count_prom = 0;
}
/** LEADING promoters **/
/** REMOVE **/
void Organism::remove_promoters_starting_between(int32_t pos_1, int32_t pos_2) {
if (pos_1 > pos_2) {
remove_promoters_starting_after(pos_1);
remove_promoters_starting_before(pos_2);
}
else {
// STL Warning: don't erase the current iterator in the for-loop!
for (auto it = prom_pos.lower_bound(pos_1),
nextit = it;
it != prom_pos.end() and it->first < pos_2;
it = nextit) {
int pidx = it->second;
auto it_p = promoters[pidx];
delete it_p;
promoters.erase(pidx);
nextit = next(it);
prom_pos.erase(it);
}
}
}
void Organism::remove_promoters_starting_after(int32_t pos) {
auto init_it = prom_pos.lower_bound(pos);
if (init_it == prom_pos.end())
return;
for (auto it = init_it,
nextit = it;
it != prom_pos.end();
it = nextit) {
delete promoters[it->second];
promoters.erase(it->second);
nextit = next(it);
prom_pos.erase(it);
}
}
void Organism::remove_promoters_starting_before(int32_t pos) {
// Delete RNAs until we reach pos (or we reach the end of the list)
for (auto it = prom_pos.begin(),
nextit = it;
it != prom_pos.end() and it->first < pos;
it = nextit) {
delete promoters[it->second];
promoters.erase(it->second);
nextit = next(it);
prom_pos.erase(it);
}
}
/** LOOK **/
void Organism::locate_promoters() {
look_for_new_promoters_starting_between(0,dna_->length());
}
void Organism::look_for_new_promoters_starting_between(int32_t pos_1,int32_t pos_2) {
// When pos_1 > pos_2, we will perform the search in 2 steps.
// As positions 0 and dna_->length() are equivalent, it's preferable to
// keep 0 for pos_1 and dna_->length() for pos_2.
if (pos_1 >= pos_2) {
look_for_new_promoters_starting_after(pos_1);
look_for_new_promoters_starting_before(pos_2);
return;
}
// Hamming distance of the sequence from the promoter consensus
//cout << pos_1 << "-" << pos_2 << endl;
for (int32_t i = pos_1; i < pos_2; i++) {
int8_t dist = dna_->promoter_at(i);
if (dist <= 4 && prom_pos.find(i) == prom_pos.end()) {
Promoter* nprom = new Promoter(i, dist);
int prom_idx = count_prom;
count_prom = count_prom + 1;
promoters[prom_idx] = nprom;
prom_pos[i] = prom_idx;
}
}
}
void Organism::look_for_new_promoters_starting_after(int32_t pos) {
for (int32_t i = pos; i < dna_->length(); i++) {
int dist = dna_->promoter_at(i);
if (dist <= 4) { // dist takes the hamming distance of the sequence from the consensus
if (prom_pos.find(i) == prom_pos.end()) {
Promoter* nprom = new Promoter(i, dist);
int prom_idx = count_prom;
count_prom = count_prom + 1;
promoters[prom_idx] = nprom;
prom_pos[i] = prom_idx;
}
}
}
}
void Organism::look_for_new_promoters_starting_before(int32_t pos) {
// Hamming distance of the sequence from the promoter consensus
for (int32_t i = 0; i < pos; i++) {
int dist = dna_->promoter_at(i);
if (dist <= 4) { // dist takes the hamming distance of the sequence from the consensus
if (prom_pos.find(i) == prom_pos.end()) {
Promoter* nprom = new Promoter(i, dist);
int prom_idx = count_prom;
count_prom = count_prom + 1;
promoters[prom_idx] = nprom;
prom_pos[i] = prom_idx;
}
}
}
}
/** EXTRACT **/
void Organism::extract_promoters_starting_between(int32_t pos_1,
int32_t pos_2, std::list<Promoter*>& extracted_promoters) {
if (pos_2 < pos_1) {
auto first = prom_pos.lower_bound(pos_1);
if (first == prom_pos.end() or first->first >= pos_2) {
return;
}
// Extract the promoters (remove them from the individual's list and put them in extracted_promoters)
for (auto it = first;
it != prom_pos.end();
it++) {
extracted_promoters.push_back(promoters[it->second]);
promoters.erase(it->second);
}
prom_pos.erase(first, prom_pos.end());
// Find the last promoters in the interval
auto end = prom_pos.lower_bound(pos_2);
// Extract the promoters (remove them from the individual's list and put them in extracted_promoters)
for (auto it = prom_pos.begin();
it != end;
it++) {
extracted_promoters.push_back(promoters[it->second]);
promoters.erase(it->second);
}
prom_pos.erase(prom_pos.begin(),end);
} else {
auto first = prom_pos.lower_bound(pos_1);
if (first == prom_pos.end() or first->first >= pos_2) {
return;
}
// Find the last promoters in the interval
auto end = prom_pos.lower_bound(pos_2);
// Extract the promoters (remove them from the individual's list and put them in extracted_promoters)
for (auto it = first;
it != end;
it++) {
extracted_promoters.push_back(promoters[it->second]);
promoters.erase(it->second);
}
prom_pos.erase(first, end);
}
}
void Organism::promoters_included_in(int32_t pos_1, int32_t pos_2, std::list<Promoter*>& promoters_list) {
if (pos_1 < pos_2) {
int32_t seg_length = pos_2 - pos_1;
if (seg_length >= PROM_SIZE) {
lst_promoters(BETWEEN, pos_1, pos_2 - PROM_SIZE + 1,
promoters_list);
}
}
else {
int32_t seg_length = dna_->length() + pos_2 - pos_1;
if (seg_length >= PROM_SIZE) {
bool is_near_end_of_genome = (pos_1 + PROM_SIZE > dna_->length());
bool is_near_beginning_of_genome = (pos_2 - PROM_SIZE < 0);
if (!is_near_end_of_genome && !is_near_beginning_of_genome) {
lst_promoters(AFTER, pos_1, -1, promoters_list);
lst_promoters(BEFORE, -1, pos_2 - PROM_SIZE + 1,
promoters_list);
}
else if (!is_near_end_of_genome) // => && is_near_beginning_of_genome
{
lst_promoters(BETWEEN, pos_1, pos_2 - PROM_SIZE + 1 +
dna_->length(),
promoters_list);
}
else if (!is_near_beginning_of_genome) // => && is_near_end_of_genome
{
lst_promoters(AFTER, pos_1, -1, promoters_list);
lst_promoters(BEFORE, -1, pos_2 - PROM_SIZE + 1,
promoters_list);
}
else // is_near_end_of_genome && is_near_beginning_of_genome
{
lst_promoters(BETWEEN, pos_1, pos_2 - PROM_SIZE + 1 +
dna_->length(),
promoters_list);
}
}
}
}
void Organism::lst_promoters(Position before_after_btw, // with regard to the strand's reading direction
int32_t pos1,
int32_t pos2,
std::list<Promoter*>& promoters_list) {
auto it_begin = prom_pos.begin();
auto it_end = prom_pos.end();
if (before_after_btw != BEFORE && pos1 != -1) {
auto tmp_it = prom_pos.lower_bound(pos1);
if (tmp_it == prom_pos.end())
return;
if (tmp_it!=prom_pos.end()) it_begin = tmp_it;
}
if (before_after_btw != AFTER && pos2 != -1) {
auto tmp_it = prom_pos.lower_bound(pos2);
if (tmp_it!=prom_pos.end()) it_end = tmp_it;
}
for (auto it = it_begin; it!=it_end; it++) {
promoters_list.push_back(promoters[it->second]);
}
}