-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
246 lines (198 loc) · 8.94 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (successor,
action, stepCost), where 'successor' is a successor to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that successor.
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def depthFirstSearch(problem):
"""
Search the deepest nodes in the search tree first.
Your search algorithm needs to return a list of actions that reaches the
goal. Make sure to implement a graph search algorithm.
To get started, you might want to try some of these simple commands to
understand the search problem that is being passed in:
print "Start:", problem.getStartState()
print "Is the start a goal?", problem.isGoalState(problem.getStartState())
print "Start's successors:", problem.getSuccessors(problem.getStartState())
"""
"*** YOUR CODE HERE ***"
#util.raiseNotDefined()
from util import Stack
path_to_node = []
problem_start_state = problem.getStartState()
start_node = [problem_start_state, path_to_node] #path_to_node : a list with actions required to reach each node, starting from the start_node
frontier = Stack()
frontier.push(start_node)
explored = set()
while True:
if frontier.isEmpty():
return [] # return failure = a empty list
parent = frontier.pop()
if problem.isGoalState(parent[0]): #if goal state has reached
return parent[1] #return solution , parent[1] = the path_to_node list
if parent[0] not in explored : # parent[0] = parent's state
explored.add(parent[0])
children = problem.getSuccessors(parent[0]) # children = list of triples (successor, action, stepCost) /we dont need stepCost at this case
for child in children: #for each successor
child_state = child[0]
child_action = child[1]
if (child_state not in explored):
path_to_child = list(parent[1]) #creating a copy of a path_to_node list reaching up to the previous node
path_to_child.append(child_action) #adding to the list mentioned above, the action required to reach the child from the parent
child = [child_state, path_to_child]
frontier.push(child)
def breadthFirstSearch(problem): # it is exactly the same code as dfs above, apart from the fact that the frontier is a queue this time
"""Search the shallowest nodes in the search tree first."""
"*** YOUR CODE HERE ***"
#util.raiseNotDefined()
from util import Queue
path_to_node = []
problem_start_state = problem.getStartState()
start_node = [problem_start_state, path_to_node]
frontier = Queue()
frontier.push(start_node)
explored = set()
while True :
if frontier.isEmpty():
return []
parent = frontier.pop()
if problem.isGoalState(parent[0]):
return parent[1]
if parent[0] not in explored:
explored.add(parent[0])
children = problem.getSuccessors(parent[0])
for child in children :
child_state = child[0]
child_action = child[1]
if (child_state not in explored):
path_to_child = list(parent[1])
path_to_child.append(child_action)
child = [child_state, path_to_child]
frontier.push(child)
def uniformCostSearch(problem): # almost the same code as above with some little difference
"""Search the node of least total cost first."""
"*** YOUR CODE HERE ***"
#util.raiseNotDefined()
from util import PriorityQueue
path_to_node = []
path_cost = 0 #total cost from beginning to each node
problem_start_state = problem.getStartState()
start_node = [problem_start_state, path_to_node, path_cost] #include path_cost too
frontier = PriorityQueue()
frontier.push(start_node, path_cost) #pushing both node and path cost which will be used as a key for sorting at the priority queue
explored = set()
while True :
if frontier.isEmpty() :
return []
parent = frontier.pop()
if problem.isGoalState(parent[0]):
return parent[1]
if parent[0] not in explored:
explored.add(parent[0])
children = problem.getSuccessors(parent[0])
for child in children :
child_state = child[0]
child_action = child[1]
child_cost = child[2]
if child_state not in explored :
total_cost = parent[2] + child_cost # parent[2] = total cost from the beginning to the parent node
path_to_child = list(parent[1])
path_to_child.append(child_action)
child = [child_state, path_to_child, total_cost]
frontier.update(child, total_cost)
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic): # it is almost the same code as ucs above but with some minor differences again
"""Search the node that has the lowest combined cost and heuristic first."""
"*** YOUR CODE HERE ***"
#util.raiseNotDefined()
from util import PriorityQueue
path_to_node = []
path_cost = 0
problem_start_state = problem.getStartState()
start_node = [problem_start_state, path_to_node] # no need to store the path_cost at the node this time
frontier = PriorityQueue()
frontier.push(start_node, path_cost)
explored = set()
while True:
if frontier.isEmpty():
return []
parent = frontier.pop()
if problem.isGoalState(parent[0]):
return parent[1]
if parent[0] not in explored:
explored.add(parent[0])
children = problem.getSuccessors(parent[0])
for child in children:
child_state = child[0]
child_action = child[1]
if child_state not in explored:
path_to_child = list(parent[1])
path_to_child.append(child_action)
heuristic_cost = heuristic(child_state, problem)
cost_of_actions = problem.getCostOfActions(path_to_child) #using getCostOfActions to calculate the cost of actions from beginnig to this node
total_cost = heuristic_cost + cost_of_actions
child = [child_state, path_to_child]
frontier.update(child, total_cost)
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch