forked from mtongnz/espDMX
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDmxRdmLib.cpp
1261 lines (937 loc) · 30.3 KB
/
DmxRdmLib.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
espDMX v2 library
Copyright (c) 2016, Matthew Tong
https://github.com/mtongnz/espDMX
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program.
If not, see http://www.gnu.org/licenses/
*/
#include "DmxRdmLib.h"
espDMX dmxA(0);
espDMX dmxB(1);
void dmx_interrupt_handler(void);
uint16_t dmx_get_tx_fifo_room(dmx_t* dmx);
void dmx_interrupt_enable(dmx_t* dmx);
void dmx_interrupt_arm(dmx_t* dmx);
void dmx_interrupt_disarm(dmx_t* dmx);
void rdm_interrupt_arm(dmx_t* dmx);
void rdm_interrupt_disarm();
void dmx_set_baudrate(dmx_t* dmx, int baud_rate);
void dmx_set_chans(dmx_t* dmx, uint8_t* data, uint16_t numChans, uint16_t startChan);
void dmx_buffer_update(dmx_t* dmx, uint16_t num);
int dmx_state(dmx_t* dmx);
void rx_flush();
void dmx_flush(dmx_t* dmx);
static void uart_ignore_char(char c);
void dmx_set_buffer(dmx_t* dmx, byte* buf);
void dmx_uninit(dmx_t* dmx);
static bool timer1Set = false;
static bool rdmInUse = false;
static bool rdmBreak = false;
static bool rdm_pause = false;
static bool dmx_input = false;
static uint8_t rxUser;
static unsigned long rdmTimer = 0;
void ICACHE_RAM_ATTR dmx_interrupt_handler(void) {
// stop other interrupts for TX
noInterrupts();
if(U0IS & (1 << UIFE)) { // TX0 Fifo Empty
U0IC = (1 << UIFE); // clear status flag
dmxA._transmit();
}
if(U1IS & (1 << UIFE)) { // TX1 Fifo Empty
U1IC = (1 << UIFE); // clear status flag
dmxB._transmit();
}
interrupts();
// RDM replies
if (rdmInUse) {
if ((U0IS & (1 << UIBD)) || ( U0IS & (1 << UIFR))) { // RX0 Break Detect
U0IC = (1 << UIBD) | (1 << UIFR); // clear status flags
rdmBreak = true;
}
if(U0IS & (1 << UIFF)) { // RX0 Fifo Full
if (rxUser == 0)
dmxA.rdmReceived();
else
dmxB.rdmReceived();
}
// DMX input
} else if (dmx_input) {
// Data received
while (U0IS & (1 << UIFF)) {
if (rxUser == 0)
dmxA.dmxReceived((uint8_t)USF(0));
else
dmxB.dmxReceived((uint8_t)USF(0));
U0IC = (1 << UIFF); // Clear interrupt
}
// Break/Frame error detect
if ((U0IS & (1 << UIBD)) || ( U0IS & (1 << UIFR))) { // RX0 Break Detect
U0IC = (1 << UIBD) | (1 << UIFR); // clear status flags
if (rxUser == 0)
dmxA.inputBreak();
else
dmxB.inputBreak();
}
}
}
static void uart_ignore_char(char c) { return; }
uint16_t dmx_get_tx_fifo_room(dmx_t* dmx) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return 0;
return UART_TX_FIFO_SIZE - ((USS(dmx->dmx_nr) >> USTXC) & 0xff);
}
void dmx_flush(dmx_t* dmx) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return;
uint32_t tmp = 0x00000000;
tmp |= (1 << UCTXRST);
// Clear TX Fifo
USC0(dmx->dmx_nr) |= (tmp);
USC0(dmx->dmx_nr) &= ~(tmp);
}
void rx_flush() {
uint32_t tmp = 0x00000000;
tmp |= (1 << UCRXRST);
// Clear RX Fifo
USC0(0) |= (tmp);
USC0(0) &= ~(tmp);
}
void dmx_interrupt_enable(dmx_t* dmx) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return;
// Clear all interupt bits
USIC(dmx->dmx_nr) = 0x1ff;
if (dmx->dmx_nr == 1) {
// Set TX Fifo Empty trigger point
USC1(1) = (0 << UCFET);
// UART at 250k for DMX data
USD(1) = (ESP8266_CLOCK / DMX_TX_BAUD);
USC0(1) = DMX_TX_CONF;
}
// Attach out interupt handler function
ETS_UART_INTR_ATTACH(&dmx_interrupt_handler, NULL);
// Enable UART Interrupts
ETS_UART_INTR_ENABLE();
// UART0 setup
if (!timer1Set) {
timer1Set = true;
// UART at 250k for DMX data
USD(0) = (ESP8266_CLOCK / DMX_TX_BAUD);
USC0(0) = DMX_TX_CONF;
USC1(0) = (127 << UCFFT);
// Disable RX Fifo Full & Break Detect & Frame Error Interupts
//USIE(0) &= ~((1 << UIFF) | (1 << UIBD) | (1 << UIFR));
}
}
void dmx_interrupt_arm(dmx_t* dmx) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return;
// Clear all interupt bits
USIC(dmx->dmx_nr) = 0xffff;
// Enable TX Fifo Empty Interupt
USIE(dmx->dmx_nr) |= (1 << UIFE);
}
void dmx_interrupt_disarm(dmx_t* dmx) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return;
USIE(dmx->dmx_nr) &= ~(1 << UIFE);
}
void rdm_interrupt_arm(dmx_t* dmx) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return;
// Enable RX Fifo Full & Break Detect & Frame Error Interupts
USIE(0) |= (1 << UIFF) | (1 << UIBD) | (1 << UIFR);
digitalWrite(dmx->dirPin, LOW);
rdmBreak = false;
rxUser = dmx->dmx_nr;
dmx->rx_pos = 0;
dmx->rdm_response.clear();
// Timer1 start
// T1L = ((RDM_LISTEN_TIME)& 0x7FFFFF);
// TEIE |= TEIE1;//edge int enable
rdmTimer = micros() + 3000;
}
void rdm_interrupt_disarm() {
// Disable RX Fifo Full & Break Detect & Frame Error Interupts
USIE(0) &= ~((1 << UIFF) | (1 << UIBD) | (1 << UIFR));
// TEIE &= ~TEIE1;//edge int disable
// T1L = 0;
rdmInUse = false;
}
void dmx_set_baudrate(dmx_t* dmx, int baud_rate) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return;
USD(dmx->dmx_nr) = (ESP8266_CLOCK / baud_rate);
}
void dmx_clear_buffer(dmx_t* dmx) {
for (int i = 0; i < 512; i++)
dmx->data[i] = 0;
dmx->numChans = DMX_MIN_CHANS;
}
void dmx_set_buffer(dmx_t* dmx, byte* buf) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return;
if (dmx->ownBuffer)
os_free(dmx->data);
if (buf == NULL) {
buf = (byte*) os_malloc(sizeof(byte) * 512);
if(!buf) {
os_free(buf);
dmx->ownBuffer = 0;
return;
}
dmx->ownBuffer = 1;
} else
dmx->ownBuffer = 0;
dmx->data = buf;
}
void dmx_uninit(dmx_t* dmx) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return;
dmx_interrupt_disarm(dmx);
dmx_flush(dmx);
pinMode(dmx->txPin, OUTPUT);
digitalWrite(dmx->txPin, HIGH);
// Set DMX direction to input so no garbage is sent out
if (dmx->dirPin != 255)
digitalWrite(dmx->dirPin, LOW);
if (dmx->dmx_nr == rxUser) {
rdm_interrupt_disarm();
rx_flush();
}
if (dmx->rdm_enable) {
dmx->rdm_enable = 0;
digitalWrite(dmx->dirPin, HIGH);
dmx->todManID = (uint16_t*)realloc(dmx->todManID, 0);
dmx->todDevID = (uint32_t*)realloc(dmx->todDevID, 0);
dmx->rdmCallBack = NULL;
dmx->todCallBack = NULL;
}
os_free(dmx->data1);
dmx->data1 = 0;
dmx->isInput = false;
dmx->inputCallBack = NULL;
if (dmx->ownBuffer)
os_free(dmx->data);
}
int dmx_get_state(dmx_t* dmx) {
return dmx->state;
}
void dmx_set_state(dmx_t* dmx, int state) {
dmx->state = state;
}
void dmx_set_chans(dmx_t* dmx, uint8_t* data, uint16_t num, uint16_t start) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT)
return;
dmx->started = true;
uint16_t newNum = start + num - 1;
if (newNum > 512)
newNum = 512;
// Is there any new channel data
if (memcmp(data, &(dmx->data[start-1]), num) != 0) {
// Find the highest channel with new data
for (; newNum >= dmx->numChans; newNum--, num--) {
if (dmx->data[newNum-1] != data[num-1])
break;
}
newNum += DMX_ADD_CHANS;
// If we receive tiny data input, just output minimum channels
if (newNum < DMX_MIN_CHANS)
newNum = DMX_MIN_CHANS;
// Put data into our buffer
memcpy(&(dmx->data[start-1]), data, num);
if (newNum > dmx->numChans)
dmx->numChans = (newNum > 512) ? 512 : newNum;
dmx->newDMX = true;
//dmx_transmit(dmx);
}
}
void dmx_buffer_update(dmx_t* dmx, uint16_t num) {
if(dmx == 0 || dmx->state == DMX_NOT_INIT || num <= dmx->numChans)
return;
dmx->started = true;
if (num > 512)
num = 512;
// Find the highest channel with data
for (; num >= dmx->numChans; num--) {
if (dmx->data[num-1] != 0)
break;
}
num += DMX_ADD_CHANS;
// If we receive tiny data input, just output minimum channels
if (num < DMX_MIN_CHANS)
num = DMX_MIN_CHANS;
if (num > dmx->numChans)
dmx->numChans = (num > 512) ? 512 : num;
dmx->newDMX = true;
//dmx_transmit(dmx);
}
espDMX::espDMX(uint8_t dmx_nr) :
_dmx_nr(dmx_nr), _dmx(0) {
}
espDMX::~espDMX(void) {
end();
}
void espDMX::begin(uint8_t dir, byte* buf) {
if(_dmx == 0) {
_dmx = (dmx_t*) os_malloc(sizeof(dmx_t));
if(_dmx == 0) {
os_free(_dmx);
_dmx = 0;
return;
}
_dmx->data1 = (byte*) os_malloc(sizeof(byte) * 512);
memset(_dmx->data1, 0, 512);
_dmx->ownBuffer = 0;
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
// Initialize variables
_dmx->dmx_nr = _dmx_nr;
_dmx->txPin = (_dmx->dmx_nr == 0) ? 1 : 2;
_dmx->state = DMX_STOP;
_dmx->txChan = 0;
_dmx->full_uni_time = 0;
_dmx->last_dmx_time = 0;
_dmx->led_timer = 0;
_dmx->newDMX = false;
_dmx->started = false;
_dmx->rdm_enable = false;
_dmx->dirPin = dir; // 255 is used to indicate no dir pin
_dmx->rdmCallBack = NULL;
_dmx->todCallBack = NULL;
_dmx->isInput = false;
_dmx->inputCallBack = NULL;
// TX output set to idle
pinMode(_dmx->txPin, OUTPUT);
digitalWrite(_dmx->txPin, HIGH);
// Set direction to output
if (_dmx->dirPin != 255) {
pinMode(_dmx->dirPin, OUTPUT);
digitalWrite(_dmx->dirPin, HIGH);
}
}
if (_dmx) {
dmx_set_buffer(_dmx, buf);
dmx_clear_buffer(_dmx);
dmx_interrupt_enable(_dmx);
}
}
void espDMX::setBuffer(byte* buf) {
dmx_set_buffer(_dmx, buf);
}
void espDMX::pause() {
dmx_interrupt_disarm(_dmx);
dmx_flush(_dmx);
digitalWrite(_dmx->dirPin, HIGH);
}
void espDMX::unPause() {
if(_dmx == 0 || _dmx->state == DMX_NOT_INIT)
return;
_dmx->newDMX = true;
_dmx->state = DMX_STOP;
digitalWrite(_dmx->dirPin, HIGH);
//dmx_transmit(_dmx);
}
void espDMX::end() {
if (_dmx == 0)
return;
dmx_uninit(_dmx);
os_free(_dmx);
_dmx = 0;
}
void espDMX::setChans(byte *data, uint16_t numChans, uint16_t startChan) {
dmx_set_chans(_dmx, data, numChans, startChan);
}
void espDMX::chanUpdate(uint16_t numChans) {
dmx_buffer_update(_dmx, numChans);
}
void espDMX::clearChans() {
if(_dmx == 0 || _dmx->state == DMX_NOT_INIT)
return;
dmx_clear_buffer(_dmx);
}
byte *espDMX::getChans() {
if(_dmx == 0 || _dmx->state == DMX_NOT_INIT)
return 0;
return _dmx->data;
}
uint16_t espDMX::numChans() {
if(_dmx == 0 || _dmx->state == DMX_NOT_INIT)
return 0;
return _dmx->numChans;
}
void espDMX::ledIntensity(uint8_t newIntensity) {
if(_dmx == 0 || _dmx->state == DMX_NOT_INIT)
return;
_dmx->ledIntensity = newIntensity;
}
void ICACHE_RAM_ATTR espDMX::_transmit(void) {
// If we have data to transmit
if (_dmx->txChan < _dmx->txSize) {
// Keep the number of bytes sent low to keep it quick
// uint16_t txSize = dmx->txSize - dmx->txChan;
// txSize = (txSize > DMX_MAX_BYTES_PER_INT) ? DMX_MAX_BYTES_PER_INT : txSize;
// for(; txSize; --txSize)
USF(_dmx->dmx_nr) = _dmx->data1[_dmx->txChan++];
// dmx_interrupt_arm(dmx);
// If all bytes are transmitted
} else {
//dmx_interrupt_disarm(_dmx);
USIE(_dmx->dmx_nr) &= ~(1 << UIFE);
if (_dmx->state == DMX_TX) {
_dmx->state = DMX_STOP;
} else if (!rdm_pause) { // if (_dmx->state == RDM_TX) {
_dmx->state = RDM_RX;
rdm_interrupt_arm(_dmx);
}
}
}
bool espDMX::rdmSendCommand(rdm_data* data) {
if (_dmx == 0 || !_dmx->rdm_enable || _dmx->rdm_queue.isFull())
return false;
if (system_get_free_heap_size() < 2000)
return false;
byte packetLength = data->packet.Length;
uint16_t checkSum = 0x0000;
for (byte x = 0; x < packetLength; x++) {
checkSum += data->buffer[x];
}
checkSum = checkSum % 0x10000;
data->buffer[packetLength] = checkSum >> 8;
data->buffer[packetLength + 1] = checkSum & 0xFF;
bool r = _dmx->rdm_queue.push(data);
return r;
}
bool espDMX::rdmSendCommand(uint8_t cmdClass, uint16_t pid, uint16_t manID, uint32_t devID, byte* data, uint16_t dataLength, uint16_t subDev) {
if (_dmx == 0 || !_dmx->rdm_enable)
return false;
rdm_data command;
// Note that all ints are stored little endian so we need to flip them
// to get correct byte order
command.packet.StartCode = (E120_SC_RDM << 8) | E120_SC_SUB_MESSAGE;
command.packet.Length = 24 + dataLength;
command.packet.DestMan = manID;
command.packet.DestDev = devID;
command.packet.SourceMan = _dmx->rdm_source_man;
command.packet.SourceDev = _dmx->rdm_source_dev;
command.packet.TransNo = _dmx->rdm_trans_no++;
command.packet.ResponseType = 0x01;
command.packet.MsgCount = 0;
command.packet.SubDev = subDev;
command.packet.CmdClass = cmdClass;
command.packet.PID = pid;
command.packet.DataLength = dataLength;
if (dataLength > 0)
memcpy(command.packet.Data, data, dataLength);
return rdmSendCommand(&command);
}
void espDMX::rdmReceived() {
if (_dmx == 0 || _dmx->state != RDM_RX)
return;
while((USS(0) >> USRXC) & 0x7F) {
_dmx->rdm_response.buffer[_dmx->rx_pos] = USF(0);
// Handle multiple 0xFE to start discovery response
if (_dmx->rx_pos == 1 && _dmx->rdm_response.buffer[0] == 0xFE && _dmx->rdm_response.buffer[1] == 0xFE)
continue;
// Handle break & MAB
if (rdmBreak || _dmx->rdm_response.buffer[0] == 0) {
_dmx->rx_pos = 0;
rdmBreak = false;
continue;
}
_dmx->rx_pos++;
// Get packet size and adjust timer accordingly
// unsigned long newTime = micros() + (44 * _dmx->rdm_response.buffer[2]);
// if (newTime > rdmTimer)
// rdmTimer = newTime;
// if (_dmx->rx_pos == 3 && _dmx->rdm_response.buffer[0] == 0xCC && _dmx->rdm_response.buffer[1] == 0x01) {
// uint16_t newTime = (_dmx->rdm_response.buffer[2] * RDM_BYTE_TIME);
// if (newTime > T1L)
// T1L = (newTime & 0x7FFFFF);
// }
}
// Clear interupt flags
USIC(0) = USIS(0);
}
void espDMX::rdmDiscovery(uint8_t discType) {
if (!_dmx || !_dmx->rdm_enable)
return;
if (discType == RDM_DISCOVERY_TOD_WIPE) {
_dmx->tod_size = 0;
_dmx->todManID = (uint16_t*)realloc(_dmx->todManID, 0);
_dmx->todDevID = (uint32_t*)realloc(_dmx->todDevID, 0);
_dmx->tod_status = RDM_TOD_NOT_READY;
discType = RDM_DISCOVERY_FULL;
}
byte startEnd[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
if (discType == RDM_DISCOVERY_FULL) {
_dmx->tod_changed = true;
rdmSendCommand(E120_DISCOVERY_COMMAND, E120_DISC_UN_MUTE, 0xFFFF, 0xFFFFFFFF);
rdmSendCommand(E120_DISCOVERY_COMMAND, E120_DISC_UNIQUE_BRANCH, 0xFFFF, 0xFFFFFFFF, startEnd, 12);
// discType == RDM_DISCOVERY_INCREMENTAL
} else {
if (_dmx->rdm_discovery_pos >= _dmx->tod_size) {
rdmSendCommand(E120_DISCOVERY_COMMAND, E120_DISC_UNIQUE_BRANCH, 0xFFFF, 0xFFFFFFFF, startEnd, 12);
} else {
rdmSendCommand(E120_DISCOVERY_COMMAND, E120_DISC_MUTE, _dmx->todManID[_dmx->rdm_discovery_pos], _dmx->todDevID[_dmx->rdm_discovery_pos]);
_dmx->rdm_discovery_pos++;
}
}
}
void espDMX::rdmDiscoveryResponse(rdm_data* c) {
// If we received nothing, branch is empty
if (_dmx->rx_pos == 0) {
byte a[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
// If it's a reply to the top branch, all devices are found
if (memcmp(c->packet.Data, a, 12) == 0) {
_dmx->rdm_last_discovery = millis();
_dmx->rdm_discovery_pos = 0;
_dmx->tod_status = RDM_TOD_READY;
if (_dmx->tod_changed && _dmx->todCallBack != 0) {
_dmx->tod_changed = false;
_dmx->todCallBack();
}
// Issue un-mute to all so no devices hide on the next incremental discovery
rdmSendCommand(E120_DISCOVERY_COMMAND, E120_DISC_UN_MUTE, 0xFFFF, 0xFFFFFFFF);
}
return;
}
// Check for correct length & no frame errors
if (_dmx->rdm_response.discovery.headerFE == 0xFE && _dmx->rdm_response.discovery.headerAA == 0xAA) {
uint16_t _manID;
uint32_t _devID;
byte* maskedDevID = _dmx->rdm_response.discovery.maskedDevID;
byte* maskedChkSm = _dmx->rdm_response.discovery.maskedChecksum;
_manID = (maskedDevID[0] & maskedDevID[1]);
_manID = (_manID << 8) + (maskedDevID[2] & maskedDevID[3]);
_devID = (maskedDevID[4] & maskedDevID[5]);
_devID = (_devID << 8) + (maskedDevID[6] & maskedDevID[7]);
_devID = (_devID << 8) + (maskedDevID[8] & maskedDevID[9]);
_devID = (_devID << 8) + (maskedDevID[10] & maskedDevID[11]);
// Calculate checksum
uint16_t checkSum = 0;
for (uint8_t x = 0; x < 12; x++)
checkSum += maskedDevID[x];
checkSum = checkSum % 10000;
uint16_t mChk = (maskedChkSm[0] & maskedChkSm[1]);
mChk = (mChk << 8) | (maskedChkSm[2] & maskedChkSm[3]);
// If the checksum is valid
if (checkSum == mChk) {
// Send mute command to check device is there & to mute from further discovery requests
rdmSendCommand(E120_DISCOVERY_COMMAND, E120_DISC_MUTE, _manID, _devID);
// Recheck the branch
c->packet.TransNo = _dmx->rdm_trans_no++;
rdmSendCommand(c);
return;
}
}
// If we didn't get a valid response, split branch and try again
uint64_t m = 0;
uint64_t n = 0;
uint64_t e = 0;
// Get current end address
for (uint8_t x = 6; x < 12; x++)
e = (e << 8) | c->packet.Data[x];
// Calculate the midpoint & midpoint + 1
e = e << 16;
m = e >> 1;
n = m + 1;
// Check if we're at the bottom branch
if (n == e) {
uint16_t a = __builtin_bswap16(e >> 32);
uint32_t b = __builtin_bswap32(e & 0xFFFFFFFF);
// Send mute command to check device is there & to mute from further discovery requests
rdmSendCommand(E120_DISCOVERY_COMMAND, E120_DISC_MUTE, a, b);
return;
}
// Bitswap to fix endianess
m = __builtin_bswap64(m);
e = __builtin_bswap64(e);
n = __builtin_bswap64(n);
// If we reach max queue size, wait for a bit and try again
while (_dmx->rdm_queue.space() < 2) {
yield();
}
// Send command for lower half
memcpy(&c->packet.Data[6], &m, 6);
c->packet.TransNo = _dmx->rdm_trans_no++;
rdmSendCommand(c);
// Send command for upper half
memcpy(c->packet.Data, &n, 6);
memcpy(&c->packet.Data[6], &e, 6);
c->packet.TransNo = _dmx->rdm_trans_no++;
rdmSendCommand(c);
}
void espDMX::rdmMuteResponse(rdm_data* c) {
_dmx->rdm_response.endianFlip();
// Check for correct length & ACK response
if (_dmx->rx_pos > 15) {
if (c->packet.DestMan == _dmx->rdm_response.packet.SourceMan && c->packet.DestDev == _dmx->rdm_response.packet.SourceDev && _dmx->rdm_response.packet.ResponseType == E120_RESPONSE_TYPE_ACK) {
uint16_t checkSum = 0;
uint8_t x = 0;
for (; x < _dmx->rdm_response.packet.Length; x++)
checkSum += _dmx->rdm_response.buffer[x];
checkSum = checkSum % 10000;
// Check the checksum
if (_dmx->rdm_response.buffer[x] == (checkSum >> 8) && _dmx->rdm_response.buffer[x+1] == (checkSum & 0xFF)) {
// Is the device already in our UID list
for (uint16_t x = 0; x < _dmx->tod_size; x++) {
if (_dmx->todManID[x] == _dmx->rdm_response.packet.SourceMan && _dmx->todDevID[x] == _dmx->rdm_response.packet.SourceDev) {
if (x == _dmx->rdm_discovery_pos)
_dmx->rdm_discovery_pos++;
return;
}
}
// Add the deivce to our UID list
_dmx->todManID = (uint16_t*)realloc(_dmx->todManID, (_dmx->tod_size+1) * sizeof(uint16_t));
_dmx->todDevID = (uint32_t*)realloc(_dmx->todDevID, (_dmx->tod_size+1) * sizeof(uint32_t));
_dmx->todManID[_dmx->tod_size] = _dmx->rdm_response.packet.SourceMan;
_dmx->todDevID[_dmx->tod_size] = _dmx->rdm_response.packet.SourceDev;
_dmx->tod_size++;
_dmx->tod_changed = true;
}
}
// No response received
} else {
// Delete devices from TOD if they didn't respond
for (uint16_t x = 0; x < _dmx->tod_size; x++) {
if (_dmx->todManID[x] == c->packet.DestMan && _dmx->todDevID[x] == c->packet.DestDev) {
// Shift all our devices up the list
for (uint16_t y = x+1; y < _dmx->tod_size; y++) {
_dmx->todManID[y-1] = _dmx->todManID[y];
_dmx->todDevID[y-1] = _dmx->todDevID[y];
}
_dmx->tod_size--;
_dmx->tod_changed = true;
_dmx->rdm_discovery_pos = 0;
_dmx->todManID = (uint16_t*)realloc(_dmx->todManID, _dmx->tod_size * sizeof(uint16_t));
_dmx->todDevID = (uint32_t*)realloc(_dmx->todDevID, _dmx->tod_size * sizeof(uint32_t));
return;
}
}
}
}
void espDMX::rdmRXTimeout() {
if (_dmx == 0)
return;
if (rdm_pause) {
rdm_interrupt_disarm();
dmx_flush(_dmx);
_dmx->state = DMX_STOP;
digitalWrite(_dmx->dirPin, HIGH);
//dmx_transmit(_dmx);
return;
}
// Get remaining data
rdmReceived();
_dmx->state = DMX_STOP;
digitalWrite(_dmx->dirPin, HIGH);
rdm_interrupt_disarm();
rdm_data c;
_dmx->rdm_queue.pop(&c);
//dmx_transmit(_dmx);
if (c.packet.CmdClass == E120_DISCOVERY_COMMAND) {
if (c.packet.PID == E120_DISC_UNIQUE_BRANCH) {
rdmDiscoveryResponse(&c);
return;
} else if (c.packet.PID == E120_DISC_MUTE) {
rdmMuteResponse(&c);
return;
} else if (c.packet.PID == E120_DISC_UN_MUTE) {
// There shouldn't be a response to un mute commands
return;
}
}
if (_dmx->rdmCallBack != NULL)
_dmx->rdmCallBack(&_dmx->rdm_response);
}
void espDMX::rdmEnable(uint16_t ManID, uint32_t DevID) {
if (_dmx == 0 || _dmx->dirPin == 255 || dmx_input)
return;
// RDM Variables
_dmx->rx_pos = 0;
_dmx->rdm_trans_no = 0;
_dmx->rdm_discovery = false;
_dmx->rdm_last_discovery = 0;
_dmx->todManID = NULL;
_dmx->todDevID = NULL;
_dmx->tod_size = 0;
_dmx->tod_status = RDM_TOD_NOT_READY;
_dmx->rdm_discovery_pos = 0;
_dmx->rdmCallBack = NULL;
_dmx->rdm_enable = true;
_dmx->rdm_queue.init();
// Setup direction pin
digitalWrite(_dmx->dirPin, HIGH);
// Enable RX pin (same for both universes)
pinMode(3, SPECIAL);
_dmx->rdm_source_man = ManID;
_dmx->rdm_source_dev = DevID;
rdmDiscovery();
}
void espDMX::rdmDisable() {
if (_dmx == 0)
return;
if (rdmInUse && rxUser == _dmx->dmx_nr) {
rdmInUse = false;
_dmx->state = DMX_STOP;
}
_dmx->rdm_enable = false;
digitalWrite(_dmx->dirPin, HIGH);
}
uint8_t espDMX::todStatus() {
if (_dmx == 0 || !_dmx->rdm_enable)
return false;
return _dmx->tod_status;
}
uint16_t espDMX::todCount() {
if (_dmx == 0 || !_dmx->rdm_enable)
return false;
return _dmx->tod_size;
}
uint16_t* espDMX::todMan() {
if (_dmx == 0 || !_dmx->rdm_enable)
return NULL;
return _dmx->todManID;
}
uint32_t* espDMX::todDev() {
if (_dmx == 0 || !_dmx->rdm_enable)
return NULL;
return _dmx->todDevID;
}
uint16_t espDMX::todMan(uint16_t n) {
if (_dmx == 0 || !_dmx->rdm_enable)
return NULL;
return _dmx->todManID[n];
}
uint32_t espDMX::todDev(uint16_t n) {
if (_dmx == 0 || !_dmx->rdm_enable)
return NULL;
return _dmx->todDevID[n];
}
void espDMX::rdmSetCallBack(rdmCallBackFunc callback) {
if (_dmx == 0)
return;
_dmx->rdmCallBack = callback;
}
void espDMX::todSetCallBack(todCallBackFunc callback) {
if (_dmx == 0)
return;
_dmx->todCallBack = callback;
}
bool espDMX::rdmEnabled() {
if (_dmx == 0)
return 0;
return _dmx->rdm_enable;
}
void rdmPause(bool p) {
if (dmx_input && p == false)
return;
rdm_pause = p;
if (p) {
if (rdmInUse) {
if (rxUser == 0)
dmxA.rdmRXTimeout();
else
dmxB.rdmRXTimeout();
}
rdmInUse = false;
} else {
dmxA.rdmDiscovery(RDM_DISCOVERY_FULL);
dmxB.rdmDiscovery(RDM_DISCOVERY_FULL);
}
}