forked from aaronbzimmerman/PHY-387M
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLecture 11.tex
500 lines (431 loc) · 26.4 KB
/
Lecture 11.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
\documentclass[11pt]{article}
% DEFINE COMMANDS
\usepackage{NotesTeX}
\usepackage[font=small,labelfont=bf]{caption}
\usepackage{enumerate}
\usepackage{amsmath,amssymb,amscd,amsfonts}
\usepackage{xcolor}
\usepackage{color}
\input{undertilde}
\usepackage{tikz}
\usepackage{tikz-cd}
\tikzcdset{every label/.append style = {font = \small}}
\tikzcdset{row sep/normal=3.5em}
\tikzcdset{column sep/normal=3.5em}
\usetikzlibrary{matrix}
\usetikzlibrary{decorations.markings,calc,shapes}
\usetikzlibrary{positioning}
\usepackage{graphicx}
\usepackage{empheq}
\usepackage{physics}
\usepackage{siunitx}
\usepackage{tensor}
\usepackage{multicol}
\usepackage{youngtab}
\usepackage{cancel}
\usepackage{caption}
\usepackage{graphicx}
\usepackage{subcaption}
\usepackage{hyperref}
\usepackage{float}
% added by Jingtian Shi
\usepackage{indentfirst}
\usepackage{cases}
\usepackage{bbm}
% % % % % % % % % % % % % % % % % % % % % % %
\title{{\Huge General Relativity}\\{\Large{Class 11 --- February 14, 2020}}} %replace with class number
\author{Rabia Husain}
\emailAdd{r.husain@utexas.edu} %replace with your email
\begin{document}
\maketitle
\flushbottom
\newpage
\pagestyle{fancynotes}
\part{More on One Forms}
\section{One Forms and the Gradient}
In 3D, vectors can be decomposed via the Helmholtz decomposition into:
\begin{equation}
\begin{aligned}
\bar{V} &= \bar{\nabla} \Phi + \bar{\nabla} \cross \bar{A}
\end{aligned}
\end{equation}
\sn{(1.1) Where $\Phi$ is some scalar function and $\bar{A}$ is some vector field.}
So, one forms are not uniquely represented by the gradient of some function since there is a component that is the curl of a field. However, we do not yet have a definition for the cross product in higher dimensions. \\
An example of a one form is the gradient:
\begin{equation}
\begin{aligned}
\undertilde{\omega} &= \undertilde{d}f
\end{aligned}
\end{equation}
This can be used to build a more general definition for a one form:
\begin{equation}
\begin{aligned}
\undertilde{\omega} &= &= \omega_\mu dx^\mu
\end{aligned}
\end{equation}
in which dx$^\mu$ is the coordinate basis.
Now, consider if $\omega_\mu = \partial_\mu f$. Then,
\begin{equation}
\begin{aligned}
\partial_\mu \omega_\nu - \partial_\nu \omega_\mu &= \partial_\mu \partial_\nu f - \partial_\nu \partial_\mu f &= 0
\end{aligned}
\end{equation}
This shows that not all one forms can be written as the gradient of a function.
\section{Kinds of One Forms}
\begin{itemize}
\item
A "rotation-free" one form is defined as:
\begin{equation}
\begin{aligned}
\undertilde{\omega} &= h \undertilde{d}f
\end{aligned}
\end{equation}
for h and f as some other functions on the manifold. This type of one form can no longer be written as a gradient of a function. It is possible to show that $\omega_{[\mu} \partial_\nu \omega_{\rho]} = 0$, meaning that all indices are fully antisymmetrized
\sn{Recall the definition of antisymmetrization:\\*
$A_{[\mu \nu]} = \frac{1}{2}(A_{\mu\nu} - A_{\nu\mu})$\\*
$A_{[\mu \nu \rho]} = \frac{1}{6}(A_{\mu\nu\rho} + A_{\rho\mu\nu} + A_{\nu\rho\mu} - A_{\rho\nu\mu} - A_{\mu\rho\nu} - A_{\nu\mu\rho})$\\*
and so on.
}
, where $\omega^\mu$ is perpendicular to some hypersurface.\\
\begin{figure} [H]
\begin{center}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,290); %set diagram left start at 0, and has height of 290
%Straight Lines [id:da49102712773303336]
\draw (73.32,76.1) -- (27.71,16.16) ;
\draw [shift={(26.5,14.57)}, rotate = 412.73] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da14219197988999288]
\draw (95.91,76.1) -- (115.57,12.51) ;
\draw [shift={(116.16,10.6)}, rotate = 467.19] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da7460748238245491]
\draw (117.82,109.84) -- (182.83,174.59) ;
\draw [shift={(184.24,176)}, rotate = 224.89] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da08032749909424197]
\draw (127.79,98.59) -- (202.51,107.62) ;
\draw [shift={(204.5,107.86)}, rotate = 186.88] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da200107508264308]
\draw (105.87,87.35) -- (145.63,26.17) ;
\draw [shift={(146.72,24.49)}, rotate = 483.02] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da9454722590314142]
\draw (82.62,73.45) -- (92.63,3.98) ;
\draw [shift={(92.92,2)}, rotate = 458.2] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Shape: Free Drawing [id:dp7820127954742717]
\draw [color={rgb, 255:red, 200; green, 0; blue, 0 } ][line width=1.00] [line join = round][line cap = round] (72.33,78.54) .. controls (72.33,69.94) and (92.91,75.57) .. (98.23,76.6) .. controls (100.78,77.1) and (98.72,84.94) .. (100.89,85.64) .. controls (104.58,86.84) and (107.51,87.24) .. (110.85,88.87) .. controls (113.24,90.03) and (113.43,94.41) .. (116.16,94.68) .. controls (118.51,94.91) and (127.59,95.32) .. (128.12,97.91) .. controls (128.86,101.5) and (124.19,102.37) .. (122.14,104.36) .. controls (119.56,106.87) and (118.54,110.44) .. (116.16,112.76) .. controls (113.59,115.26) and (109.55,114.63) .. (105.54,115.34) .. controls (103.56,115.69) and (100.18,117.94) .. (98.9,118.57) .. controls (98.13,118.94) and (98.86,120.51) .. (97.57,120.51) ;
\end{tikzpicture}
\caption{A vector field (in black) normal to some weirdly shaped surface (in red). It is possible to check if a vector field is normal to a hypersurface using $\omega_{[\mu} \partial_\nu \omega_{\rho]}$}
\end{center}
\end{figure}
\item
A "curl-free" one form is a special type of one form defined as:
\begin{equation}
\begin{aligned}
\undertilde{\omega} &= \undertilde{d}f
\end{aligned}
\end{equation}
If a one form is "curl-free", then it obeys equation (1.4). So, does every one form which obeys equation (1.4) have the form $\omega_\mu = \partial_\mu f$?
The answer is no, not always. This depends on the space that you are in. If you are looking locally, meaning in the neighborhood of the point, then yes, $\omega_\mu = \partial_\mu f$ holds. We call this a closed form, which implies that the form is exact. If you are looking globally, however, $\omega_\mu = \partial_\mu f$ does not hold, meaning that in some spaces, not all closed forms are exact.
\end{itemize}
\newpage
\part{The Metric Tensor}
The metric tensor in curved spacetime is:
\begin{equation}
\begin{aligned}
\textsl{g} &= g_{\mu\nu} \undertilde{d}x^\mu \otimes \undertilde{d}x^\nu
\end{aligned}
\end{equation}
where $g_{\mu\nu}$ represents the components of \textsl{g}. This should not be confused with $\eta_{\mu\nu}$, which was used previously to represent the metric for flat space. While it is appropriate to use $g_{\mu\nu}$ as the metric for flat space as well as for curved space, $\eta_{\mu\nu}$ is reserved solely for flat space.
\sn{Some properties of $g_{\mu\nu}$:\\*
$g_{(\mu\nu)} = g_{\mu\nu}$ (symmetric)\\*
$g_{\mu\nu}$ has 10 degrees of freedom.\\*}
\
\begin{figure} [h!]
\begin{centering}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Shape: Rectangle [id:dp057203150669281166]
\draw (245.24,55.94) -- (466.39,68.27) -- (386.26,230.06) -- (165.11,217.73) -- cycle ;
%Shape: Ellipse [id:dp7426483505989552]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (352,121) .. controls (352,119.34) and (353.46,118) .. (355.25,118) .. controls (357.04,118) and (358.5,119.34) .. (358.5,121) .. controls (358.5,122.66) and (357.04,124) .. (355.25,124) .. controls (353.46,124) and (352,122.66) .. (352,121) -- cycle ;
%Curve Lines [id:da40220588321168127]
\draw (358.5,121) .. controls (400,127) and (493.5,188) .. (491.5,183) ;
% Text Node
\draw (490,61) node [align=left] {{\fontfamily{pcr}\selectfont \textit{{\Large $\mathcal{M}$}}}};
% Text Node
\draw (530,185) node [align=left] {{\Large $g_{\mu\nu}(x^\mu)$}};
\end{tikzpicture}
\caption{The manifold $\mathcal{M}$ on which we have a point $x^\mu$. The metric $g_{\mu\nu}$ at that point is defined by $g_{\mu\nu}(x^\mu)$.}
\end{centering}
\end{figure}
\\
We can define the determinant of the metric tensor as the following.
\begin{equation}
\begin{aligned}
det(g_{\mu\nu}) = g
\end{aligned}
\end{equation}
If $g \neq 0$, then the inverse matrix of $g_{\mu\nu}$, called $g^{\mu\nu}$, exists. $g^{\mu\nu}$ has the property that $g^{\mu\alpha} g_{\alpha\nu} = \tensor{\delta}{^\mu_\nu}$.
\newpage
\section{Raising and Lowering Indices}
Since the metric tensor forms an invertible map between one forms and vectors, we can now define a way to raise and lower the indices of one forms and vectors,
\begin{equation}
\begin{aligned}
\omega^\mu &= g^{\mu\alpha} \omega_\alpha
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
V_\mu &= g_{\mu\alpha} V^\alpha
\end{aligned}
\end{equation}
Equation (3.1) defines a way to raise indices, going from one forms to vectors. Equation (3.2) defines a way to lower indices, going from vectors to one forms.
\section{The Dot Product}
We can also use the metric tensor to define the dot product.
\begin{equation}
\begin{aligned}
\bar{U} \cdot \bar{V} &= \textsl{g}(\bar{U}, \bar{V}) = g_{\mu\nu} U^\mu V^\nu
\end{aligned}
\end{equation}
Using this definition of the dot product, we can define the magnitude of vectors.
\begin{equation}
\begin{aligned}
V_\mu V^\mu &= \begin{cases}
< 0 & "timelike" \\
> 0 & "spacelike" \\
= 0 & "null"/"lightlike"
\end{cases}
\end{aligned}
\end{equation}
\sn{This is similar to our previous definitions of "timelike separated", "spacelike separated", and "lightlike separated" when we were discussing the spacetime interval $\Delta s^2$ in special relativity. }
for some $\bar{V}(f) = \frac{df}{d\lambda}$ where $\bar{V} = \frac{\bar{d}}{d\lambda}$. $\bar{V}$ is a directional derivative that can act on a function. It is fine to think about $\bar{V} = V^\mu \bar{e}_{(\mu)}$, but $\bar{e}_{(\mu)}$ is just a directional derivative now. For the one form $\undertilde{w}$: $T_{p} \to \mathbb{R}$ acting on $\bar{V}$, $\undertilde{w}(\bar{V}) = w_\mu V^\mu$. This one form is acting via contraction to map a derivative to the real numbers.
\section{Distance}
We can also write down a definition for distance using the metric. For a spacelike curve, we define distance as proper distance s.
\begin{equation}
\begin{aligned}
s &= \int_{\lambda_a}^{\lambda_b} \sqrt{g_{\mu\nu}\frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda}} d\lambda
\end{aligned}
\end{equation}
\begin{figure} [H]
\begin{centering}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Shape: Rectangle [id:dp23892371044725258]
\draw (245.24,55.94) -- (466.39,68.27) -- (386.26,230.06) -- (165.11,217.73) -- cycle ;
%Shape: Ellipse [id:dp9092469368360838]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (390,122) .. controls (390,120.34) and (391.46,119) .. (393.25,119) .. controls (395.04,119) and (396.5,120.34) .. (396.5,122) .. controls (396.5,123.66) and (395.04,125) .. (393.25,125) .. controls (391.46,125) and (390,123.66) .. (390,122) -- cycle ;
%Curve Lines [id:da9538166255148022]
\draw [line width=1.5] (241.5,150) .. controls (302.5,71) and (351.5,206) .. (393.25,122) ;
%Shape: Ellipse [id:dp16113315915972826]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (238.25,150) .. controls (238.25,148.34) and (239.71,147) .. (241.5,147) .. controls (243.29,147) and (244.75,148.34) .. (244.75,150) .. controls (244.75,151.66) and (243.29,153) .. (241.5,153) .. controls (239.71,153) and (238.25,151.66) .. (238.25,150) -- cycle ;
%Curve Lines [id:da6008935998750689]
\draw [color={rgb, 255:red, 206; green, 31; blue, 31 } ,draw opacity=1 ][line width=1.5] (260.5,158) .. controls (299.9,128.45) and (340.27,203.68) .. (381.61,155.3) ;
\draw [shift={(383.5,153)}, rotate = 488.4] [color={rgb, 255:red, 206; green, 31; blue, 31 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
% Text Node
\draw (490,61) node [align=left] {{\fontfamily{pcr}\selectfont \textit{{\Large $\mathcal{M}$}}}};
% Text Node
\draw (231,136) node [align=left] {a};
% Text Node
\draw (406,107) node [align=left] {b};
% Text Node
\draw (325,180) node [color={rgb, 255:red, 206; green, 31; blue, 31 } ,opacity=1 ] [align=left] {$\lambda$};
\end{tikzpicture}
\caption{The manifold $\mathcal{M}$ on which we have a spacelike curve from points a to b. The curve is parameterized by $\lambda$.}
\end{centering}
\end{figure}
For a timelike curve, we define distance as proper time $\tau$.
\begin{equation}
\begin{aligned}
\tau &= \int_{\lambda_a}^{\lambda_b} \sqrt {-g_{\mu\nu}\frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda}} d\lambda
\end{aligned}
\end{equation}
\begin{figure} [H]
\begin{centering}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Shape: Rectangle [id:dp7772720349895936]
\draw (245.24,55.94) -- (466.39,68.27) -- (386.26,230.06) -- (165.11,217.73) -- cycle ;
%Shape: Ellipse [id:dp9229137638825369]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (383.25,88) .. controls (383.25,86.34) and (384.71,85) .. (386.5,85) .. controls (388.29,85) and (389.75,86.34) .. (389.75,88) .. controls (389.75,89.66) and (388.29,91) .. (386.5,91) .. controls (384.71,91) and (383.25,89.66) .. (383.25,88) -- cycle ;
%Curve Lines [id:da9987216988000933]
\draw [line width=1.5] (242.5,195) .. controls (281.5,50) and (331.5,99) .. (386.5,88) ;
%Shape: Ellipse [id:dp673923819992343]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (239.25,195) .. controls (239.25,193.34) and (240.71,192) .. (242.5,192) .. controls (244.29,192) and (245.75,193.34) .. (245.75,195) .. controls (245.75,196.66) and (244.29,198) .. (242.5,198) .. controls (240.71,198) and (239.25,196.66) .. (239.25,195) -- cycle ;
%Curve Lines [id:da4312717007952007]
\draw [color={rgb, 255:red, 206; green, 31; blue, 31 } ,draw opacity=1 ][line width=1.5] (259.5,197) .. controls (271.08,138.13) and (305.01,112.79) .. (329.84,103) ;
\draw [shift={(332.5,102)}, rotate = 520.2] [color={rgb, 255:red, 206; green, 31; blue, 31 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
% Text Node
\draw (490,61) node [align=left] {{\fontfamily{pcr}\selectfont \textit{{$\mathcal{M}$}}}};
% Text Node
\draw (223,190) node [align=left] {a};
% Text Node
\draw (407,83) node [align=left] {b};
% Text Node
\draw (317,153) node [color={rgb, 255:red, 219; green, 41; blue, 41 } ,opacity=1 ] [align=left] {$\lambda$};
\end{tikzpicture}
\caption{The manifold $\mathcal{M}$ on which we have a timelike curve from points a to b. The curve is parameterized by $\lambda$.}
\end{centering}
\end{figure}
In both cases, we have assumed nothing about the parameterization $\lambda$. It is important to note that the proper time and proper distance along a specified curve between two points is invariant under coordinate changes.
\begin{equation}
\begin{aligned}
V^\mu V_\mu = V^{\mu'} V_{\mu'}
\end{aligned}
\end{equation}
A convenient shorthand for distance, ds, can be written as follows:
\begin{equation}
\begin{aligned}
ds^2 &= g_{\mu\nu} \undertilde{d}x^\mu \otimes \undertilde{d}x^\nu\\*
&= g_{\mu\nu} dx^\mu dx^\nu
\end{aligned}
\end{equation}
While the second line of equation (5.4) is an abuse of notation, this is safe to use if one acts as though $dx^\mu$ and $dx^\nu$ are just differential objects.
\begin{example}
Let us consider cartesian coordinates in 3D flat space. In this space,
\begin{equation}
\begin{aligned}
g_{ij} &= \begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1\\
\end{pmatrix}
\end{aligned}
\end{equation}
We can write the distance as:
\begin{equation}
\begin{aligned}
ds^2 &= \undertilde{d}x \otimes \undertilde{d}x + \undertilde{d}y \otimes \undertilde{d}y + \undertilde{d}z \otimes \undertilde{d}z \\
&= dx^2 + dy^2 + dz^2
\end{aligned}
\end{equation}
This is just the Pythagorean theorem!
\begin{figure} [H]
\begin{centering}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,310); %set diagram left start at 0, and has height of 310
%Shape: Axis 2D [id:dp3047269498828842]
\draw (269,181.6) -- (496.5,181.6)(291.75,16) -- (291.75,200) (489.5,176.6) -- (496.5,181.6) -- (489.5,186.6) (286.75,23) -- (291.75,16) -- (296.75,23) ;
%Straight Lines [id:da9031157297069901]
\draw (304.5,165) -- (203.7,299.4) ;
\draw [shift={(202.5,301)}, rotate = 306.87] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Shape: Ellipse [id:dp9075810371677688]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (340.25,132) .. controls (340.25,130.34) and (341.71,129) .. (343.5,129) .. controls (345.29,129) and (346.75,130.34) .. (346.75,132) .. controls (346.75,133.66) and (345.29,135) .. (343.5,135) .. controls (341.71,135) and (340.25,133.66) .. (340.25,132) -- cycle ;
%Shape: Ellipse [id:dp9057939691084516]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (428.25,96) .. controls (428.25,94.34) and (429.71,93) .. (431.5,93) .. controls (433.29,93) and (434.75,94.34) .. (434.75,96) .. controls (434.75,97.66) and (433.29,99) .. (431.5,99) .. controls (429.71,99) and (428.25,97.66) .. (428.25,96) -- cycle ;
%Straight Lines [id:da812753551580975]
\draw (343.5,132) -- (431.5,96) ;
% Text Node
\draw (382,95) node [align=left] {$ds^2$};
% Text Node
\draw (294,5) node [align=left] {z};
% Text Node
\draw (510,180) node [align=left] {x};
% Text Node
\draw (194,306) node [align=left] {y};
% Text Node
\draw (331,136) node [align=left] {a};
% Text Node
\draw (447,93) node [align=left] {b};
\end{tikzpicture}
\caption{Two points a and b separated by a distance $ds^2$ in 3D flat space.}
\end{centering}
\end{figure}
Now, we will transform coordinates from (x, y, z) $\to$ (r, $\theta$, $\phi$). Let us denote (x, y, z) with $x^i$ and (r, $\theta$, $\phi$) with $x^{i'}$. We will perform this transformation using the Jacobian transformation matrices $\frac{\partial x^{i'}}{\partial x^{i}}$.
For i = 1:
\begin{equation}
\begin{aligned}
\frac{\partial x^{1'}}{\partial x^1} &= \frac{\partial r}{\partial x} = \frac{\partial}{\partial x} \sqrt{x^2 + y^2 + z^2} = \frac{x}{r}
\end{aligned}
\end{equation}
This same process can be done for i = 2 and i = 3. The distance in spherical polar coordinates is as follows:
\begin{equation}
\begin{aligned}
ds^2 &= dr^2 + r^2d\theta^2 + r^2 \sin^2{\theta}d\phi^2
\end{aligned}
\end{equation}
Now, we can write the metric and its inverse for this coordinate system.
\begin{equation}
\begin{aligned}
g_{ij} &= \begin{pmatrix}
1 & 0 & 0\\
0 & r^2 & 0\\
0 & 0 & r^2\sin^2{\theta}\\
\end{pmatrix}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
g^{ij} &= \begin{pmatrix}
1 & 0 & 0\\
0 & \frac{1}{r^2} & 0\\
0 & 0 & \frac{1}{r^2\sin^2{\theta}}\\
\end{pmatrix}
\end{aligned}
\end{equation}
\end{example}
\begin{example}
Another example that we can consider is the 4D Friedmann–Lemaître–Robertson–Walker (FLRW) metric.
\begin{equation}
\begin{aligned}
ds^2 &= -dt^2 + a^2(t)(dx^2 + dy^2 + dz^2)
\end{aligned}
\end{equation}
This looks like our spacetime interval $\Delta s^2$ for flat 4D spacetime except for the $a^2(t)$ term, which is called the "scale factor".
\begin{figure} [H]
\begin{centering}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,381); %set diagram left start at 0, and has height of 381
%Shape: Axis 2D [id:dp8310412399811793]
\draw (274,211.6) -- (451.5,211.6)(291.75,73) -- (291.75,227) (444.5,206.6) -- (451.5,211.6) -- (444.5,216.6) (286.75,80) -- (291.75,73) -- (296.75,80) ;
%Shape: Axis 2D [id:dp06756589499718757]
\draw (309.5,211.51) -- (132,212.38)(292.43,350.2) -- (291.67,196.2) (139.03,217.35) -- (132,212.38) -- (138.98,207.35) (297.39,343.17) -- (292.43,350.2) -- (287.39,343.22) ;
%Shape: Ellipse [id:dp3232775634506875]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (337,212) .. controls (337,210.34) and (338.46,209) .. (340.25,209) .. controls (342.04,209) and (343.5,210.34) .. (343.5,212) .. controls (343.5,213.66) and (342.04,215) .. (340.25,215) .. controls (338.46,215) and (337,213.66) .. (337,212) -- cycle ;
%Shape: Ellipse [id:dp39951307098776034]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (288.5,211.6) .. controls (288.5,209.94) and (289.96,208.6) .. (291.75,208.6) .. controls (293.54,208.6) and (295,209.94) .. (295,211.6) .. controls (295,213.26) and (293.54,214.6) .. (291.75,214.6) .. controls (289.96,214.6) and (288.5,213.26) .. (288.5,211.6) -- cycle ;
%Straight Lines [id:da31362189603752033]
\draw [line width=1.5] (340.25,212) -- (291.75,211.6) ;
% Text Node
\draw (293,59) node [align=left] {ct};
% Text Node
\draw (463,209) node [align=left] {x};
% Text Node
\draw (315,226) node [align=left] {dx};
% Text Node
\draw (281,200) node [align=left] {a};
% Text Node
\draw (352,200) node [align=left] {b};
\end{tikzpicture}
\caption{Two points in 4D spacetime separated by a distance in space, dx.}
\end{centering}
\end{figure}
For Figure 6 above, $ds^2 = a^2(t)dx^2 = a^2dx^2 \to ds = adx$. This means that observers at fixed coordinates see the distance between themselves grow or shrink in time depending on the value of $a$, the scale factor.
\end{example}
\section{Transformations}
For a tensor T, the transformation of its components is defined as follows:
\begin{equation}
\begin{aligned}
T_{\mu ' \nu '} &= \frac{\partial x^\mu}{\partial x^{\mu '}} \frac{\partial x^\nu}{\partial x^{\nu '}} T^{\mu \nu}
\end{aligned}
\end{equation}
The components of the tensor change under transformation, however the tensor itself is invariant under coordinate transformation.
\begin{example}
Let us consider an example which is $\boldsymbol{not}$ a tensor: $\Tilde{\epsilon}_{\mu\nu\rho\sigma}$.
\begin{equation}
\begin{aligned}
\Tilde{\epsilon}_{\mu '\nu '\rho '\sigma '} &= \frac{\partial x^\mu}{\partial x^{\mu '}} \frac{\partial x^\nu}{\partial x^{\nu '}} \frac{\partial x^\rho}{\partial x^{\rho '}} \frac{\partial x^\sigma}{\partial x^{\sigma '}} \Tilde{\epsilon}_{\mu\nu\rho\sigma}\\
&= det \begin{vmatrix}
\frac{\partial x^\mu}{\partial x^{\mu '}} \\
\end{vmatrix} \Tilde{\epsilon}_{\mu\nu\rho\sigma}
\end{aligned}
\end{equation}
There is a "scaling factor", $\begin{vmatrix}
\frac{\partial x^\mu}{\partial x^{\mu '}} \\
\end{vmatrix}$
, multiplying $\Tilde{\epsilon}_{\mu\nu\rho\sigma}$ which shows that $\Tilde{\epsilon}_{\mu\nu\rho\sigma}$ is not invariant under coordinate transformation. Thus, $\Tilde{\epsilon}_{\mu\nu\rho\sigma}$ is not a tensor.
\end{example}
\end{document}