forked from aaronbzimmerman/PHY-387M
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLecture 14.tex
565 lines (480 loc) · 32.8 KB
/
Lecture 14.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
\documentclass[10pt]{article}
\usepackage{NotesTeX} %/Path/to/package should be replaced with package location
\usepackage{lipsum}
\usepackage{tensor}
\usepackage{amsmath,amsthm,amssymb}
\usepackage{hyperref}
\usepackage{gensymb}
\usepackage{subcaption}
\usepackage{wrapfig}
\usepackage{float}
\newcommand{\bs}{\textbackslash}
\title{{\Huge General Relativity}\\{\Large{Class 15 -- February 21, 2020}}} %replace with class number
\author{Stacie Moltner}
\emailAdd{staciemoltner@utexas.edu} %replace with your email
\begin{document}
\maketitle
\flushbottom
\newpage
\pagestyle{fancynotes}
\section{Orbits Around Spherically Symmetric Black Holes}\label{sec:orbits}
\begin{itemize}
\item Line element for a spherically symmetric black hole, or Schwarzschild black hole:
\begin{equation}
ds^2 = -\left(1-\dfrac{2M}{r}\right)dt^2 + \dfrac{dr^2}{1-\frac{2M}{r}} + r^2 d\Omega^2,
\end{equation}
where $M$ is the mass of the black hole in units of $G=c=1$.
Note: to convert $M$ back to SI units of mass, replace by conversion factor $\frac{GM}{c^2}$.
\item Placing spherical shells around the black hole and labelling each shell by its radius (Figure \ref{fig:shells}), corresponding to coordinate $r$, observers on a shell will measure proper time
\begin{equation}
d\tau = \left(1-\dfrac{2M}{r}\right)^{\frac{1}{2}} dt,
\end{equation}
and distance between shells
\begin{equation}
ds = \dfrac{dr}{\left(1-\frac{2M}{r}\right)^\frac{1}{2}}.
\end{equation}
Clocks on the shell will run slower than clocks far away, and distances measured on the shell will be larger than measured from far away.
\begin{figure}[h]\label{fig:shells}
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Shape: Circle [id:dp00569042670082609]
\draw [line width=1.5] (89.75,165.25) .. controls (89.75,151.44) and (100.94,140.25) .. (114.75,140.25) .. controls (128.56,140.25) and (139.75,151.44) .. (139.75,165.25) .. controls (139.75,179.06) and (128.56,190.25) .. (114.75,190.25) .. controls (100.94,190.25) and (89.75,179.06) .. (89.75,165.25) -- cycle ;
%Shape: Circle [id:dp011870213663315088]
\draw [line width=1.5] (20,165.25) .. controls (20,112.92) and (62.42,70.5) .. (114.75,70.5) .. controls (167.08,70.5) and (209.5,112.92) .. (209.5,165.25) .. controls (209.5,217.58) and (167.08,260) .. (114.75,260) .. controls (62.42,260) and (20,217.58) .. (20,165.25) -- cycle ;
%Shape: Circle [id:dp17328455139373267]
\draw [line width=1.5] (34.38,165.25) .. controls (34.38,120.86) and (70.36,84.88) .. (114.75,84.88) .. controls (159.14,84.88) and (195.13,120.86) .. (195.13,165.25) .. controls (195.13,209.64) and (159.14,245.63) .. (114.75,245.63) .. controls (70.36,245.63) and (34.38,209.64) .. (34.38,165.25) -- cycle ;
%Straight Lines [id:da5026773640476042]
\draw [line width=1.5] (146.75,238.63) -- (153.21,252.3) ;
% Text Node
\draw (136,130) node [align=left] {{\fontfamily{helvet}\selectfont $r = 2M$}};
% Text Node
\draw (86,230) node [align=left] {$r_1$};
% Text Node
\draw (76,262) node [align=left] {$r_2$};
% Text Node
\draw (158,262) node [align=left] {$ds$};
\end{tikzpicture}
\caption{Spherical shells at $r=r_1,r_2$ surrounding the black hole horizon at $r=2M$. Distances between shells are measured by $ds$.}
\end{figure}
\item In orbits around black holes, specific energy and specific angular momentum are conserved quantities on trajectories subject only to the forces of curved spacetime (i.e. geodesics):
\begin{align}
\text{Specific energy:}& \qquad \mathcal{E} = \dfrac{E}{m}.
\\
\text{Specific angular momentum:}& \qquad \mathcal{L} = \dfrac{L}{m} = r^2 \dfrac{d\phi}{d\tau}.
\end{align}
\item Recall that the tangent to the curve travelled by a particle is given by $U^\mu = \frac{dx^\mu}{d\tau}$, %satisfying $U^\mu U^\nu g_{\mu\nu} = -1$,
from which we can derive:
\begin{equation}
\mathcal{E}^2 = \left(\dfrac{dr}{d\tau}\right)^2 + V_\text{eff},
\end{equation}
where $\frac{dr}{d\tau}$ is the radial velocity and $V_\text{eff}$ is the effective potential:
\begin{equation}\label{eq:veff_bh_1}
V_\text{eff} = \left(1-\dfrac{2M}{r}\right)\left(1+\dfrac{\mathcal{L}^2}{r^2}\right).
\end{equation}
\item
Comparing this to energy and effective potential in the Newtonian case of a spherically symmetric gravitational potential,
\begin{align}
&E = \dfrac{1}{2}m\dot{r}^2 + V_\text{eff},
\\
&V_\text{eff} = -\dfrac{2Mm}{r} + \dfrac{L^2}{2mr^2}.
\label{eq:veff_newt}
\end{align}
%\end{equation}
%\begin{equation}
Far away, the effective potential is dominated by the first term in Eq.(\ref{eq:veff_newt}), while the second term dominates for small $r$.
Figure \ref{fig:veff_newt} shows the effective potential as well as possible orbits.
Particles travelling hyperbolic orbits have positive energy, reaching a point of closest approach before turning around.
Elliptical orbits have negative energy, and are bound in orbit.
Circular, stable orbits have zero radial velocity, orbiting at constant radius.
\begin{figure}[h]
\centering
\label{fig:veff}
\begin{subfigure}{0.5\textwidth} \label{fig:veff_newt}
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,650); %set diagram left start at 0, and has height of 650
%Straight Lines [id:da9441816186050421]
\draw [line width=1.5] (80,250) -- (80,33) ;
\draw [shift={(80,30)}, rotate = 450] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da9687655051970443]
\draw [line width=1.5] (51.5,140) -- (338.5,140) ;
\draw [shift={(341.5,140)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Curve Lines [id:da8257399427279626]
\draw [line width=1.5] (90.07,49.62) .. controls (93.95,150.14) and (105.95,240.14) .. (149.95,240.14) .. controls (193.95,240.14) and (200.95,152.14) .. (311.5,150) ;
%Straight Lines [id:da4141774024729541]
\draw [line width=1.5] [dash pattern={on 1.69pt off 2.76pt}] (94,90) -- (310.17,90) ;
%Straight Lines [id:da5016916420858185]
\draw [line width=1.5] [dash pattern={on 5.63pt off 4.5pt}] (111,202.46) -- (200.93,202.46) ;
%Shape: Circle [id:dp6498127078174468]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (153.51,240.14) .. controls (153.51,238.18) and (151.92,236.58) .. (149.95,236.58) .. controls (147.99,236.58) and (146.39,238.18) .. (146.39,240.14) .. controls (146.39,242.11) and (147.99,243.7) .. (149.95,243.7) .. controls (151.92,243.7) and (153.51,242.11) .. (153.51,240.14) -- cycle ;
%Curve Lines [id:da23902979172722738]
\draw (219.39,231.77) .. controls (211.39,246.77) and (184.39,260.77) .. (155,246.77) ;
% Text Node
\draw (59,25.46) node [align=left] {$\displaystyle V_\text{eff}$};
% Text Node
\draw (340,126.46) node [align=left] {$\displaystyle r$};
% Text Node
\draw (283,82) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Hyperbolic};
% Text Node
\draw (179,194) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Elliptical};
% Text Node
\draw (259,223) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Circular (stable)};
\end{tikzpicture}
\subcaption{Newtonian effective potential with possible orbits.}
\end{subfigure}
\begin{subfigure}{0.5\textwidth} \label{fig:veff_gr}
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,650); %set diagram left start at 0, and has height of 650
%Straight Lines [id:da40833697820157033]
\draw [line width=1.5] (80,500) -- (80,283) ;
\draw [shift={(80,280)}, rotate = 450] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da5886300795452046]
\draw [line width=1.5] (51.5,461) -- (338.5,461) ;
\draw [shift={(341.5,461)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Curve Lines [id:da7119234455375559]
\draw [line width=1.5] (103.89,488.04) .. controls (113.83,347.33) and (122.17,338.33) .. (140.17,338.33) .. controls (158.17,338.33) and (163.83,360.33) .. (180.17,390.33) .. controls (196.5,420.33) and (208.83,440.33) .. (229.83,440.33) .. controls (250.83,440.33) and (265.83,396.33) .. (319.83,389.33) ;
%Straight Lines [id:da8860122903021546]
\draw [line width=1.5] [dash pattern={on 1.69pt off 2.76pt}] (164,360) -- (319.83,360) ;
%Straight Lines [id:da35086257271406274]
\draw [line width=1.5] [dash pattern={on 5.63pt off 4.5pt}] (198,420.46) -- (258.83,420.46) ;
%Shape: Circle [id:dp4670184596858362]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (233.39,440.33) .. controls (233.39,438.37) and (231.8,436.77) .. (229.83,436.77) .. controls (227.87,436.77) and (226.27,438.37) .. (226.27,440.33) .. controls (226.27,442.3) and (227.87,443.89) .. (229.83,443.89) .. controls (231.8,443.89) and (233.39,442.3) .. (233.39,440.33) -- cycle ;
%Shape: Circle [id:dp8655485684914681]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (142.73,338.33) .. controls (142.73,336.37) and (141.13,334.77) .. (139.17,334.77) .. controls (137.2,334.77) and (135.61,336.37) .. (135.61,338.33) .. controls (135.61,340.3) and (137.2,341.89) .. (139.17,341.89) .. controls (141.13,341.89) and (142.73,340.3) .. (142.73,338.33) -- cycle ;
%Curve Lines [id:da825883119903197]
\draw (275.39,437.77) .. controls (264.39,453.77) and (248.39,454.77) .. (235,446.77) ;
%Curve Lines [id:da894643506405834]
\draw (159.92,317.68) .. controls (141.92,315.68) and (138.5,332) .. (140,330.77) ;
%Straight Lines [id:da742508397381557]
\draw [line width=1.5] [dash pattern={on 1.69pt off 2.76pt}] (80,300) -- (320.92,300) ;
% Text Node
\draw (59,275.46) node [align=left] {$\displaystyle V_{eff}$};
% Text Node
\draw (340,447.46) node [align=left] {$\displaystyle r$};
% Text Node
\draw (138,450) node [align=left] {$\displaystyle r=2M$};
% Text Node
\draw (293,351) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Hyperbolic};
% Text Node
\draw (238,412) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Elliptical};
% Text Node
\draw (305,429) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Circular (stable)};
% Text Node
\draw (212,318) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Circular (unstable)};
% Text Node
\draw (297,292) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Captured};;
\end{tikzpicture}
\subcaption{\textbf{Schwarzschild?} effective potential with possible orbits. At $r=2M$, $V_\text{eff}=0$.}
\end{subfigure}
\caption{Effective potentials for the Newtonian and Schwarzschild cases.}
\end{figure}
\item
Expanding the effective potential of the black hole (Eq. (\ref{eq:veff_bh_1})):
\begin{equation}
V_{\text{eff}}= 1 - \dfrac{2M}{r} + \dfrac{\mathcal{L}^2}{r^2} - \dfrac{2M\mathcal{L}^2}{r^3}.
\end{equation}
The first term on the right hand side accounts for the minimum energy of a particle, its rest mass ($E=m \Rightarrow \frac{E}{m}=1$).
Of the remaining terms, the second term on the right dominates at large $r$, while the fourth term dominates at small $r$, close to the black hole.
Figure \ref{fig:veff_gr} shows the effective potential of the Schwarzschild black hole with possible orbits. In addition to hyperbolic, elliptical, and stable circular orbits as in the Newtonian case, there exist unstable circular orbits and captured orbits. Given a little bit of energy, particles in unstable circular orbits will travel out to infinity, or fall into the black hole. Particles in captured orbits fall into the black hole.
\end{itemize}
\section{Beyond the Horizon}\label{sec:beyondhorizon}
\begin{itemize}
\item In Schwarzschild coordinates we've been unable to go beyond the horizon because the metric becomes singular at $r=2M$. Choosing a new set of coordinates, we can transform the metric to one which has no singularity at $r=2M$.
\item We can find a new coordinate system by considering the paths of light rays traveling into the black hole. Coordinates travelling along light rays are called null coordinates.
%From the perspective of the $(t,r)$ coordinates, light rays will appear to pile up at the horizon, though the light itself travels into the horizon.
\subsection{Null Coordinates in Flat Spacetime}
For a light ray travelling radially in flat space,
\begin{equation}\label{eq:nullray}
\dfrac{dt}{dr}=\pm 1,
\end{equation}
which has solution $t \pm r = \text{constant}$.
On a spacetime diagram, these represent $45\degree$ lines:
\begin{align}
&u = t-r,
\\
&v = t+r,
\end{align}
shown in Figure \ref{fig:const_u_v}.
\begin{figure}[h]\label{fig:const_u_v}
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Straight Lines [id:da5722185969021005]
\draw [line width=1.5] (120.5,259.61) -- (120.5,102.96) ;
\draw [shift={(120.5,99.96)}, rotate = 450] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da5661439418090585]
\draw [line width=1.5] (99.76,240.03) -- (407.11,240.03) ;
\draw [shift={(410.11,240.03)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da7647157962680482]
\draw [line width=1.5] (120,160) -- (200.42,240.42) ;
\draw [shift={(160.21,200.21)}, rotate = 45] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (11.61,-5.58) -- (0,0) -- (11.61,5.58) -- cycle ;
%Straight Lines [id:da7829854491463476]
\draw [line width=1.5] (120.43,140.43) -- (219.42,239.42) ;
\draw [shift={(169.93,189.93)}, rotate = 45] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (11.61,-5.58) -- (0,0) -- (11.61,5.58) -- cycle ;
%Straight Lines [id:da29078029443885445]
\draw [line width=1.5] (239.42,240.42) -- (360.04,119.8) ;
\draw [shift={(299.73,180.11)}, rotate = 495] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (11.61,-5.58) -- (0,0) -- (11.61,5.58) -- cycle ;
%Straight Lines [id:da644885109375044]
\draw [line width=1.5] (120.43,120.43) -- (240.42,240.42) ;
\draw [shift={(180.43,180.43)}, rotate = 45] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (11.61,-5.58) -- (0,0) -- (11.61,5.58) -- cycle ;
%Straight Lines [id:da755268462922307]
\draw [line width=1.5] (259.42,240.42) -- (380.04,119.8) ;
\draw [shift={(319.73,180.11)}, rotate = 495] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (11.61,-5.58) -- (0,0) -- (11.61,5.58) -- cycle ;
%Straight Lines [id:da4481297569386541]
\draw [line width=1.5] (279.42,240.42) -- (400.04,119.8) ;
\draw [shift={(339.73,180.11)}, rotate = 495] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (11.61,-5.58) -- (0,0) -- (11.61,5.58) -- cycle ;
%Straight Lines [id:da558337311834136]
\draw (159.93,179.93) -- (188.24,151.62) ;
\draw [shift={(189.65,150.2)}, rotate = 495] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da15448502747119763]
\draw (329.73,169.11) -- (285.65,125.02) ;
\draw [shift={(284.23,123.61)}, rotate = 405] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
% Text Node
\draw (166,118) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Lines of\\constant $\displaystyle v$};
% Text Node
\draw (380,189.06) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {Lines of\\constant $\displaystyle u$};
% Text Node
\draw (110,106) node [align=left] {$\displaystyle t$};
% Text Node
\draw (409,227) node [align=left] {$\displaystyle r$};
% Text Node
\draw (224,159) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {$\displaystyle v$ increasing};
% Text Node
\draw (320,114) node [font=\fontsize{0.8em}{0.96em}\selectfont] [align=left] {$\displaystyle u$ increasing};
\end{tikzpicture}
\caption{}
\end{figure}
\subsection{Null Coordinates in Black Hole Spacetime}
For black holes, we previously found
\begin{equation}
\dfrac{dt}{dr} = \pm \left(1-\dfrac{2M}{r}\right)^{-1}.
\end{equation}
Defining $f \equiv \left(1-\dfrac{2M}{r}\right)$, and using the chain rule with new coordinate $r_*$, we can write
\begin{equation}
\dfrac{dt}{dr} = \dfrac{dt}{dr_*} \dfrac{dr_*}{dr}=\pm f^{-1}.
\end{equation}
If we insist that
\begin{equation}\label{eq:drstar}
\frac{dr_*}{dr}= f^{-1},
\end{equation}
we have $\frac{dt}{dr_*} = \pm 1$, with $t\pm r_*=\text{constant}$, analogous to Eq. (\ref{eq:nullray}). Redefining $u,v$ using new coordinate $r_*$:
\begin{align}
&u = t-r_*,
\\ &v = t+r_*.
\end{align}
Along outgoing (incoming) null rays, $u$ ($v$) is constant while $v$ ($u$) changes.
Solving Eq. (\ref{eq:drstar}):
\begin{align}
\dfrac{dr^*}{dr} &= f^{-1}
\\ &= \dfrac{1}{1-\frac{2M}{r}}
\\ &= \dfrac{r}{r-2M}
\end{align}
\begin{equation}
r_* = r + 2M \log\left(\dfrac{r}{2M}-1\right)
\end{equation}
$r_*$ is called the \textbf{tortoise coordinate}.
Note that as $r \rightarrow 2M$, $\left(\dfrac{r}{2M}-1\right)\rightarrow 0$, so $r_*\rightarrow -\infty$.
%\begin{align}
%\log\left(\frac{r}{2M}-1\right)\rightarrow -\infty.
%\end{align}
Transforming coordinates to a new coordinate system,
\begin{equation}
x^{\mu '} = (v,r,\theta,\phi),
\end{equation}
counting time by light rays sent into the black hole.
We can transform our coordinate system,
\begin{align}
v&=t+r_* & \Rightarrow & &t=v-r_*
\\r&=r & & &r=r,
\end{align}
so the differential $dt$ becomes
\begin{align}
dt&=dv-dr_*
\\ &=dv - \dfrac{dr_*}{dr}dr
\\ &=dv-\dfrac{1}{f}dr.
\end{align}
Transforming the metric,
\begin{align}
ds^2 &= -f\left(dv-\dfrac{dr}{f}\right)^2+\dfrac{dr^2}{f}+r^2 d\Omega
\\ &=-f dv^2 + 2dv dr + r^2 d\Omega^2
\end{align}
Light rays travel along paths $ds^2=0$:
\begin{align}
0 &=f\dfrac{dv^2}{dr^2}+2\dfrac{dv dr}{dr^2}
\\ &=\dfrac{dv}{dr}\left(-f\dfrac{dv}{dr}+2\right),
\end{align}
which has solutions
\begin{align}
\dfrac{dv}{dr} &=
\begin{cases}
0
\\ \frac{2}{f}=2\left(1-\frac{2M}{r}\right)^{-1}.
\end{cases}
\end{align}
In these coordinates, light cones are tilted as shown in Figure \ref{fig:uvlightcones}.
For $r>2M$, there exist trajectories that can travel to large $r$, escaping the black hole. At $r=2M$, one light ray travels along $r=2M$, while all other light rays travel into the black hole. For $r<2M$, both ingoing and outgoing light rays point into the black hole.
\begin{figure}[h]\label{fig:uvlightcones}
\centering
% Gradient Info
\tikzset {_235qclqd4/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_hx5zxwhfw}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.82,0.01,0.11);
rgb(400bp)=(0.82,0.01,0.11)}
\tikzset{_wkt9rkgpd/.code = {\pgfsetadditionalshadetransform{\pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_070bpmikj} { \pgfpoint{0bp} {0bp}} {color(0bp)=(transparent!0);
color(0bp)=(transparent!0);
color(25bp)=(transparent!50);
color(400bp)=(transparent!50)}
\pgfdeclarefading{_fm43y9f1f}{\tikz \fill[shading=_070bpmikj,_wkt9rkgpd] (0,0) rectangle (50bp,50bp); }
% Gradient Info
\tikzset {_wsfv71rf5/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_5zqxlp1by}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.82,0.01,0.11);
rgb(400bp)=(0.82,0.01,0.11)}
\tikzset{_c80r5o3mi/.code = {\pgfsetadditionalshadetransform{\pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_tc9re09ln} { \pgfpoint{0bp} {0bp}} {color(0bp)=(transparent!0);
color(0bp)=(transparent!0);
color(25bp)=(transparent!50);
color(400bp)=(transparent!50)}
\pgfdeclarefading{_3wnbsmasd}{\tikz \fill[shading=_tc9re09ln,_c80r5o3mi] (0,0) rectangle (50bp,50bp); }
% Gradient Info
\tikzset {_59nr4uahj/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_r0aisth5k}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.82,0.01,0.11);
rgb(400bp)=(0.82,0.01,0.11)}
\tikzset{_mphwf1n87/.code = {\pgfsetadditionalshadetransform{\pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_ytzkk47v7} { \pgfpoint{0bp} {0bp}} {color(0bp)=(transparent!0);
color(0bp)=(transparent!0);
color(25bp)=(transparent!50);
color(400bp)=(transparent!50)}
\pgfdeclarefading{_co436xk8n}{\tikz \fill[shading=_ytzkk47v7,_mphwf1n87] (0,0) rectangle (50bp,50bp); }
% Gradient Info
\tikzset {_6gwz3k0ks/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_okyvnvv9z}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.82,0.01,0.11);
rgb(400bp)=(0.82,0.01,0.11)}
\tikzset{_gr2yrava6/.code = {\pgfsetadditionalshadetransform{\pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_w0nli0t3t} { \pgfpoint{0bp} {0bp}} {color(0bp)=(transparent!0);
color(0bp)=(transparent!0);
color(25bp)=(transparent!50);
color(400bp)=(transparent!50)}
\pgfdeclarefading{_d34i20qb2}{\tikz \fill[shading=_w0nli0t3t,_gr2yrava6] (0,0) rectangle (50bp,50bp); }
% Gradient Info
\tikzset {_0bgngox8j/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_qtksm99xm}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.82,0.01,0.11);
rgb(400bp)=(0.82,0.01,0.11)}
\tikzset{_51ds2jx88/.code = {\pgfsetadditionalshadetransform{\pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_2hcgw078d} { \pgfpoint{0bp} {0bp}} {color(0bp)=(transparent!0);
color(0bp)=(transparent!0);
color(25bp)=(transparent!50);
color(400bp)=(transparent!50)}
\pgfdeclarefading{_anp9pkkbt}{\tikz \fill[shading=_2hcgw078d,_51ds2jx88] (0,0) rectangle (50bp,50bp); }
% Gradient Info
\tikzset {_f14j6p1ka/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_dys14ybie}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.82,0.01,0.11);
rgb(400bp)=(0.82,0.01,0.11)}
\tikzset{_2833ybv8i/.code = {\pgfsetadditionalshadetransform{\pgftransformshift{\pgfpoint{0 bp } { 0 bp } } \pgftransformscale{1 } }}}
\pgfdeclareradialshading{_864vrhy7j} { \pgfpoint{0bp} {0bp}} {color(0bp)=(transparent!0);
color(0bp)=(transparent!0);
color(25bp)=(transparent!50);
color(400bp)=(transparent!50)}
\pgfdeclarefading{_4e3ee8ji7}{\tikz \fill[shading=_864vrhy7j,_2833ybv8i] (0,0) rectangle (50bp,50bp); }
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Straight Lines [id:da29834813631213797]
\draw [line width=1.5] (130.03,229.75) -- (130.03,22.75) ;
\draw [shift={(130.03,19.75)}, rotate = 450] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da689344559394921]
\draw [line width=1.5] (109.97,129.93) -- (386.97,129.93) ;
\draw [shift={(389.97,129.93)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da9018348950990027]
\draw (240.94,40.66) -- (240.94,210.66) ;
%Straight Lines [id:da29237135114301604]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (150.09,110.43) -- (190.5,149.84) ;
%Shape: Ellipse [id:dp9053789020254165]
\path [shading=_hx5zxwhfw,_235qclqd4,path fading= _fm43y9f1f ,fading transform={xshift=2}] (138.68,116.94) .. controls (141.3,111.46) and (145.83,108.16) .. (148.79,109.58) .. controls (151.76,111) and (152.04,116.59) .. (149.42,122.07) .. controls (146.8,127.55) and (142.27,130.84) .. (139.3,129.43) .. controls (136.34,128.01) and (136.06,122.42) .. (138.68,116.94) -- cycle ; % for fading
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (138.68,116.94) .. controls (141.3,111.46) and (145.83,108.16) .. (148.79,109.58) .. controls (151.76,111) and (152.04,116.59) .. (149.42,122.07) .. controls (146.8,127.55) and (142.27,130.84) .. (139.3,129.43) .. controls (136.34,128.01) and (136.06,122.42) .. (138.68,116.94) -- cycle ; % for border
%Shape: Ellipse [id:dp9069137878534819]
\path [shading=_5zqxlp1by,_wsfv71rf5,path fading= _3wnbsmasd ,fading transform={xshift=2}] (223.08,112.45) .. controls (228.47,106.78) and (235.51,104.71) .. (238.8,107.83) .. controls (242.09,110.95) and (240.39,118.09) .. (235,123.77) .. controls (229.62,129.44) and (222.58,131.51) .. (219.29,128.39) .. controls (215.99,125.27) and (217.69,118.13) .. (223.08,112.45) -- cycle ; % for fading
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (223.08,112.45) .. controls (228.47,106.78) and (235.51,104.71) .. (238.8,107.83) .. controls (242.09,110.95) and (240.39,118.09) .. (235,123.77) .. controls (229.62,129.44) and (222.58,131.51) .. (219.29,128.39) .. controls (215.99,125.27) and (217.69,118.13) .. (223.08,112.45) -- cycle ; % for border
%Shape: Ellipse [id:dp2956042502047238]
\path [shading=_r0aisth5k,_59nr4uahj,path fading= _co436xk8n ,fading transform={xshift=2}] (246.08,136.45) .. controls (251.47,130.78) and (258.51,128.71) .. (261.8,131.83) .. controls (265.09,134.95) and (263.39,142.09) .. (258,147.77) .. controls (252.62,153.44) and (245.58,155.51) .. (242.29,152.39) .. controls (238.99,149.27) and (240.69,142.13) .. (246.08,136.45) -- cycle ; % for fading
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (246.08,136.45) .. controls (251.47,130.78) and (258.51,128.71) .. (261.8,131.83) .. controls (265.09,134.95) and (263.39,142.09) .. (258,147.77) .. controls (252.62,153.44) and (245.58,155.51) .. (242.29,152.39) .. controls (238.99,149.27) and (240.69,142.13) .. (246.08,136.45) -- cycle ; % for border
%Straight Lines [id:da7676940747060697]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (140.47,129.98) -- (199.63,129.98) ;
%Straight Lines [id:da3076364509670023]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (240.29,110.89) -- (240.29,147.67) ;
%Straight Lines [id:da6437261596643233]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (221.39,129.93) -- (260.8,129.93) ;
%Straight Lines [id:da27362481897050994]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (280.47,129.98) -- (339.63,129.98) ;
%Shape: Ellipse [id:dp6666729489048879]
\path [shading=_okyvnvv9z,_6gwz3k0ks,path fading= _d34i20qb2 ,fading transform={xshift=2}] (303.57,113.1) .. controls (317.24,107.42) and (329.23,105) .. (330.34,107.69) .. controls (331.46,110.38) and (321.29,117.16) .. (307.62,122.84) .. controls (293.95,128.52) and (281.97,130.94) .. (280.85,128.25) .. controls (279.73,125.56) and (289.91,118.78) .. (303.57,113.1) -- cycle ; % for fading
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (303.57,113.1) .. controls (317.24,107.42) and (329.23,105) .. (330.34,107.69) .. controls (331.46,110.38) and (321.29,117.16) .. (307.62,122.84) .. controls (293.95,128.52) and (281.97,130.94) .. (280.85,128.25) .. controls (279.73,125.56) and (289.91,118.78) .. (303.57,113.1) -- cycle ; % for border
%Straight Lines [id:da933701256049807]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (330.2,109.83) -- (289.9,150.12) ;
%Shape: Ellipse [id:dp8535942487325642]
\path [shading=_qtksm99xm,_0bgngox8j,path fading= _anp9pkkbt ,fading transform={xshift=2}] (312.57,137.1) .. controls (326.24,131.42) and (338.23,129) .. (339.34,131.69) .. controls (340.46,134.38) and (330.29,141.16) .. (316.62,146.84) .. controls (302.95,152.52) and (290.97,154.94) .. (289.85,152.25) .. controls (288.73,149.56) and (298.91,142.78) .. (312.57,137.1) -- cycle ; % for fading
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (312.57,137.1) .. controls (326.24,131.42) and (338.23,129) .. (339.34,131.69) .. controls (340.46,134.38) and (330.29,141.16) .. (316.62,146.84) .. controls (302.95,152.52) and (290.97,154.94) .. (289.85,152.25) .. controls (288.73,149.56) and (298.91,142.78) .. (312.57,137.1) -- cycle ; % for border
%Shape: Ellipse [id:dp27216489532913013]
\path [shading=_dys14ybie,_f14j6p1ka,path fading= _4e3ee8ji7 ,fading transform={xshift=2}] (189.88,137.35) .. controls (192.5,131.87) and (197.02,128.58) .. (199.99,129.99) .. controls (202.96,131.41) and (203.24,137) .. (200.61,142.48) .. controls (197.99,147.96) and (193.47,151.25) .. (190.5,149.84) .. controls (187.53,148.42) and (187.25,142.83) .. (189.88,137.35) -- cycle ; % for fading
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (189.88,137.35) .. controls (192.5,131.87) and (197.02,128.58) .. (199.99,129.99) .. controls (202.96,131.41) and (203.24,137) .. (200.61,142.48) .. controls (197.99,147.96) and (193.47,151.25) .. (190.5,149.84) .. controls (187.53,148.42) and (187.25,142.83) .. (189.88,137.35) -- cycle ; % for border
% Text Node
\draw (388,116) node [align=left] {$\displaystyle r$};
% Text Node
\draw (118,22) node [align=left] {$\displaystyle v$};
% Text Node
\draw (241,221.66) node [align=left] {$\displaystyle r=2M$};
\end{tikzpicture}
\caption{Lightcones in $(v,r)$ coordinates.}
\end{figure}
\end{itemize}
\section{Kruskal-Szkeres Coordinates}
As above, we can use coordinate transformations to understand more of the black hole. Previously we started with Schwarzschild coordinates $(t,r)$ and mapped to new coordinates $(u,v)$. Mapping from $(u,v)$ to new coordinates called Kruskal-Szekeres or Kruskal coordinates $(U,V)$ gives us the maximally extended solution to the Schwarzschild black hole. Kruskal coordinates are defined as
\begin{align}
& U = -e^{-u/4m},
\\
& V = e^{v/4m}.
\end{align}
As with $u$ and $v$, $U$ and $V$ follow light ray paths.
In these new coordinates, we can also define new timelike and spacelike coordinates
\begin{align}
& T = \frac{1}{2}(U+V),
\\
& R = \frac{1}{2}(V-U),
\end{align}
shown in Figure \ref{fig:kruskal} . Lines of constant $r$ travel curved paths, while lines of constant $t$ are straight lines, with light rays along $45\degree$ lines.
\begin{figure}[h]\label{fig:kruskal}
\centering
%\begin{center}
\includegraphics[scale=0.2]{carroll_fig_5_12.png}
%\end{center}
\caption{Kruskal diagram of Schwarzschild black hole [1].}
\end{figure}
The Kruskal diagram separates spacetime into 4 regions, shown in Figure \ref{fig:kruskalregions}. Region I is our universe. Region II is inside the black hole, with its singularity along the border of the shaded region. Region III is a white hole, a time-reversed copy of a black hole. Region IV is a mirror-image of our universe, which can only be reached from Region II by travelling faster than the speed of light. Theoretically, regions II and IV are connected by a wormhole.
light rays make $45\degree$ lines.
\begin{figure}[h]\label{fig:kruskalregions}
\centering
\includegraphics[scale=0.25]{carroll_fig_5_13.png}
\caption{Regions of Kruskal diagram. [1]}
\end{figure}
\newpage
\section{References}
[1] S. Carroll, Spacetime and Geometry (Addison-Wesley,
2003).
\end{document}