forked from aaronbzimmerman/PHY-387M
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLecture 18.tex
432 lines (360 loc) · 31.1 KB
/
Lecture 18.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
\documentclass[10pt]{article}
\usepackage{NotesTeX} %/Path/to/package should be replaced with package location
\usepackage{lipsum}
\usepackage{tensor}
\usepackage{amsmath,amsthm,amssymb}
\usepackage{hyperref}
\usepackage{physics}
\input{undertilde}
\newcommand{\bs}{\textbackslash}
\title{{\Huge General Relativity}\\{\Large{Class 18 - March 3, 2020}}} %replace with class number
\author{Sarah Racz}
\emailAdd{racz.sarah@utexas.edu} %replace with your email
\begin{document}
\maketitle
\flushbottom
\newpage
\pagestyle{fancynotes}
%\part{HELLO \LaTeX\,}
%Use the uncompiled version of this document in itself as a \LaTeX\, style guide for the class you'll be responsible for.
\section{Covariant Derivative Again}
Last lecture we built the covariant derivative by hand by demanding it met certain conditions. These conditions allowed us to uniquely define a covariant derivative that produces a new tensor when acting on a tensor field. In particular we defined it's action on a vector as
\begin{align}
\nabla_{\mu} T^{\nu} = \partial_{\mu} V^{\nu} + \Gamma^{\nu}_{\mu \alpha} V^{\alpha}.
\end{align}
Our connection defined uniquely and known as the \textbf{Levi-Civita} connection.
Recall that he torsion free requirement of the connection gives us that
\begin{align}
\Gamma^{\rho}_{\left[ \mu \nu \right] } = 0 \implies \Gamma^{\rho}_{( \mu \nu ) } = \Gamma^{\rho}_{ \mu \nu } ,
\end{align}
which left us with 4 degrees of freedom from $\rho$ and 10 from $\mu \nu$ for a total 40 $\Gamma$s to be determined. We further constrained this by demanding metric compatibility.
\begin{align}
\nabla_\mu g_{\nu \rho} = 0 = \partial_\mu g_{\nu \rho} - \Gamma^{\alpha}_{\mu \nu} g_{\alpha \rho} - \Gamma^{\alpha}_{\mu \rho} g_{\nu \alpha}
\end{align}
By cyclically permuting the indices and adding the resulting expressions we can find an expression for the connection, we find
\begin{equation}
\begin{aligned}
0= \nabla_\mu g_{\nu \rho} + \nabla_\nu g_{\rho \mu } + \nabla_\rho g_{\mu \nu} &= \partial_\mu g_{\nu \rho} - \Gamma^{\alpha}_{\mu \nu} g_{\alpha \rho} - \Gamma^{\alpha}_{\mu \rho} g_{\nu \alpha} + \partial_\nu g_{\rho \mu} - \Gamma^{\alpha}_{\nu \rho} g_{\alpha \mu} \\&\quad \quad \quad \quad- \Gamma^{\alpha}_{\nu \mu} g_{\rho \alpha} + \partial_\mu g_{\mu \nu} - \Gamma^{\alpha}_{\rho \mu} g_{\alpha \nu} - \Gamma^{\alpha}_{\rho \nu} g_{\mu \alpha} \\
&\implies \Gamma^{\rho}_{\mu \nu} = \frac{1}{2} g^{\rho \alpha} \left( \partial_\mu g_{\alpha \nu} + \partial_\nu g_{\alpha \mu} \right).
\end{aligned}
\end{equation}
The $\Gamma^\rho_{\mu \nu}$s are known as the \textbf{Christoffel Symbols} and can be explicitly calculated using the first derivative of the metric.
\begin{example}
Consider the metric in plane-polar coordinates given by
\begin{align*}
ds^2 = dr^2 + r^2 d\phi^2.
\end{align*}
We will calculate some of the Christoffel symbols for this metric. Letting capital Roman indices run from 1 to 2, $A=1,2$, it will also be useful for us to label the Christoffel symbols by coordinates.
\begin{align*}
\Gamma^r_{BC} &= \frac{1}{2} g^{rA} \left( \partial_B g_{CA} + \partial_C g_{BA} - \partial_A g_{BC} \right) = \frac{1}{2} g^{rr} \left( \partial_B g_{Cr} + \partial_C g_{Br} - \partial_r g_{BC} \right)
\end{align*}
Now we can read off from the metric
\begin{align*}
\Gamma^r_{\phi\phi} &= \frac{1}{2} g^{rr} \left( \partial_B g_{\phi r} + \partial_C g_{\phi r} - \partial_r g_{\phi \phi } \right)= \frac{1}{2} g^{rr} \left( - \partial_r r^2\right) =-\frac{1}{2} \times 1 \times 2 r= -r\\
\Gamma^r_{rr} &= \frac{1}{2} g^{rr} \left(\partial_r g_{rr} + \partial_r g_{rr} - \partial_r g_{rr}\right)= 0
\end{align*}
\end{example}
\section{Parallel Transport}
Once you pick a particular connection and covariant derivative, we can ask how these objects "connect" us between spaces. The connection coefficients allow us to associate a vector $\vec{W} \in T_p$ to some other vector in $T_q$.
\begin{figure}
\begin{center}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Shape: Parallelogram [id:dp45686716922248394]
\draw (188.57,57.12) -- (429.42,52.71) -- (354.35,229.59) -- (113.5,234) -- cycle ;
%Shape: Parallelogram [id:dp49694338363773927]
\draw (199.05,128) -- (257.5,128) -- (232.45,182) -- (174,182) -- cycle ;
%Shape: Parallelogram [id:dp3574677645623825]
\draw (316.05,93) -- (374.5,93) -- (349.45,147) -- (291,147) -- cycle ;
%Straight Lines [id:da8246844143539966]
\draw (164.5,211) -- (188.06,188.39) ;
\draw [shift={(189.5,187)}, rotate = 496.17] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da5664491078672309]
\draw (402.5,184) -- (363.81,139.51) ;
\draw [shift={(362.5,138)}, rotate = 408.99] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Curve Lines [id:da23513303708004218]
\draw (213,140) .. controls (239.5,93) and (307.5,92) .. (346.5,109) ;
%Curve Lines [id:da5246984843004461]
\draw [dash pattern={on 4.5pt off 4.5pt}] (207.5,151) .. controls (236.25,170) and (308.5,155) .. (348.5,125) ;
%Straight Lines [id:da48389451560387475]
\draw (213,140) -- (220.9,114.91) ;
\draw [shift={(221.5,113)}, rotate = 467.47] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9) ;
%Straight Lines [id:da8163241029539516]
\draw (247,110) -- (259.63,83.8) ;
\draw [shift={(260.5,82)}, rotate = 475.74] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9) ;
%Straight Lines [id:da7307279955715706]
\draw (295,99) -- (305.61,77.79) ;
\draw [shift={(306.5,76)}, rotate = 476.57] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9) ;
%Straight Lines [id:da8511921182852662]
\draw (346.5,109) -- (354.4,83.91) ;
\draw [shift={(355,82)}, rotate = 467.47] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9) ;
%Straight Lines [id:da4582888124741773]
\draw (215.75,155) -- (225.33,141.63) ;
\draw [shift={(226.5,140)}, rotate = 485.63] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9) ;
%Straight Lines [id:da1540386691479012]
\draw (245,159) -- (255.33,144.62) ;
\draw [shift={(256.5,143)}, rotate = 485.71] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9) ;
%Straight Lines [id:da26032488069998605]
\draw (283,155) -- (287.88,139.9) ;
\draw [shift={(288.5,138)}, rotate = 467.93] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9) ;
%Straight Lines [id:da5859608433627239]
\draw (326,139) -- (332.08,121.88) ;
\draw [shift={(332.75,120)}, rotate = 469.56] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9) ;
% Text Node
\draw (205.75,142) node {$P$};
% Text Node
\draw (354,113) node {$Q$};
% Text Node
\draw (418,189) node {$T_{Q}$};
% Text Node
\draw (157,212) node {$T_{P}$};
% Text Node
\draw (451,62) node [font=\Large] {$\mathcal{{\displaystyle M}}$};
% Text Node
\draw (277,110) node [font=\scriptsize] {$x^{\mu }( \lambda )$};
% Text Node
\draw (205,112) node [font=\footnotesize] {$\overrightarrow{W_{P}}$};
% Text Node
\draw (365,79) node [font=\footnotesize] {$\overrightarrow{W_{\text{Q}}}$};
\end{tikzpicture}
\caption{The parallel transport of $\vec W$ along $x^\mu$ to some transported $\vec W$ at point $Q$.}
\end{center}
\end{figure}
In order to parallel transport we choose a curve parametrized by $\lambda$, $x^\mu (\lambda)$ with a tangent given by $V^\mu = \frac{d x^\mu}{d\lambda}$. The equation
\begin{align}
\nabla_{\vec V} \vec W=V^\beta \left( \partial_\beta W ^\mu + \Gamma^\mu_{\beta \alpha} W^\alpha \right) = 0,
\end{align}
defines the parallel transport with respect to a given connection. This boils down to a set of $1^{\text{st}}$ order ODEs for the components of $\vec W$ with $\vec W^\mu|_p$ as the initial conditions.
Different connections define different rules of parallel transport -- or how to keep a vector the 'same' during transport. Generally the solution given by parallel transport will be path dependent, unless however the curvature vanishes. This can be seen in the figure below. \begin{figure}[h]
\begin{center}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Curve Lines [id:da7970850461973555]
\draw (101,184) .. controls (149.5,110) and (253.5,124) .. (284.5,214) ;
%Curve Lines [id:da6353765339785125]
\draw (101,184) .. controls (104.5,239) and (214.5,279) .. (284.5,214) ;
%Straight Lines [id:da05837049859307886]
\draw (101,184) -- (90.01,141.94) ;
\draw [shift={(89.5,140)}, rotate = 435.35] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da13780093371010316]
\draw (134,151) -- (123.01,108.94) ;
\draw [shift={(122.5,107)}, rotate = 435.35] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da10130628868499003]
\draw (188,136) -- (188.48,97) ;
\draw [shift={(188.5,95)}, rotate = 450.7] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da153008088853271]
\draw (231,148) -- (232.43,108) ;
\draw [shift={(232.5,106)}, rotate = 452.05] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da5838899593015612]
\draw (261,172) -- (273.85,134.89) ;
\draw [shift={(274.5,133)}, rotate = 469.09] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da1964119035999332]
\draw (284.5,214) -- (300.76,172.86) ;
\draw [shift={(301.5,171)}, rotate = 471.57] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da7919367650778628]
\draw (127,227) -- (116.01,184.94) ;
\draw [shift={(115.5,183)}, rotate = 435.35] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da09186267208805732]
\draw (176,245) -- (165.01,202.94) ;
\draw [shift={(164.5,201)}, rotate = 435.35] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da9572453492531723]
\draw (227,245) -- (216.01,202.94) ;
\draw [shift={(215.5,201)}, rotate = 435.35] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da3068748754885948]
\draw (273,223) -- (262.01,180.94) ;
\draw [shift={(261.5,179)}, rotate = 435.35] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da45017798156811883]
\draw (284.5,214) -- (273.51,171.94) ;
\draw [shift={(273,170)}, rotate = 435.35] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Curve Lines [id:da14412398495524337]
\draw (356.5,136) .. controls (314.92,160.75) and (371.35,159.04) .. (306.5,191.02) ;
\draw [shift={(304.5,192)}, rotate = 334.11] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Curve Lines [id:da601105711627504]
\draw (288.5,86) .. controls (247.34,110.5) and (307.02,135.96) .. (284.01,176.5) ;
\draw [shift={(282.5,179)}, rotate = 302.74] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
% Text Node
\draw (76,165) node {$\vec{W}$};
% Text Node
\draw (346,120) node {$\vec{W} \ \text{along 2}$};
% Text Node
\draw (312,70) node {$\vec{W} \ \text{along 1}$};
\end{tikzpicture}
\caption{The parallel transport of $\vec W$ along two different curves will generally not result in the same transported vector.}
\end{center}
\end{figure}
%
% \begin{figure}
% \begin{center}
%
% \tikzset{every picture/.style={line width=0.5pt}} %set default line width to 0.75pt
%
% \begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
% %uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%
% %Curve Lines [id:da6439402381515371]
% \draw (71.5,198) .. controls (74.5,198) and (169.5,263) .. (300.5,201) ;
% %Straight Lines [id:da004649770794803665]
% \draw (71.5,198) -- (74.41,133) ;
% \draw [shift={(74.5,131)}, rotate = 452.56] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
% %Straight Lines [id:da04642691208090155]
% \draw (300.5,201) -- (303.41,136) ;
% \draw [shift={(303.5,134)}, rotate = 452.56] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
% %Straight Lines [id:da5852930630109445]
% \draw (300.5,201) -- (337.38,146.65) ;
% \draw [shift={(338.5,145)}, rotate = 484.16] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
% %Straight Lines [id:da5898447173086896]
% \draw (93.5,143) -- (281.5,141.02) ;
% \draw [shift={(283.5,141)}, rotate = 539.4] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%
% % Text Node
% \draw (181,210) node [font=\large] {$\epsilon $};
% % Text Node
% \draw (62,208) node {$P$};
% % Text Node
% \draw (307,208) node {$Q$};
% % Text Node
% \draw (99,127) node [font=\small] {$W^{\mu }( P)$};
% % Text Node
% \draw (362,164) node [font=\small] {$W^{\mu }( Q)$};
% % Text Node
% \draw (305,121) node [font=\small] {$W^{\mu }_{\text{transported}}$};
%
%
% \end{tikzpicture}
%
% \end{center}
% \end{figure}
For two vectors $\vec A$ and $\vec B$, we can show that under any metric compatible covariant derivative the parallel transport of the vectors will preserve the inner product (angle) between them. For the parallel transported vectors we have $\nabla_{\vec V} \vec A = 0$ and $\nabla_{\vec V} \vec B=0$. The angle between $\vec A$ and $\vec B$ is defined as
\begin{align}
A^\mu B^\nu g_{\mu \nu} = A^\mu B_\mu = \text{"angle"}.
\end{align}
Now computing the parallel transport along their inner product we find
\begin{align}
\nabla_{\vec V} \left( A^\mu B_\mu \right) = A^\mu B^\nu \nabla_{\vec V} (g_{\mu \nu}) + A^\mu g_{\mu \nu} \nabla_{\vec V} B^\nu + A^\nu g_{\mu \nu} \nabla_{\vec V} B^\mu =0
\end{align}
\begin{figure}[h]
\begin{center}
\tikzset{every picture/.style={line width=0.5pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Curve Lines [id:da9570276194239729]
\draw (140,122) .. controls (179.5,54) and (388.5,219) .. (454.5,121) ;
%Straight Lines [id:da7016830486075938]
\draw (141,120) -- (120.25,68.85) ;
\draw [shift={(119.5,67)}, rotate = 427.91999999999996] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da3446611304914631]
\draw (141,120) -- (149.21,63.98) ;
\draw [shift={(149.5,62)}, rotate = 458.34] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da5217484020196854]
\draw (425,145) -- (404.25,93.85) ;
\draw [shift={(403.5,92)}, rotate = 427.91999999999996] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da12719509303118004]
\draw (425,145) -- (433.21,88.98) ;
\draw [shift={(433.5,87)}, rotate = 458.34] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
% Text Node
\draw (280,157) node {$x^{\mu }( \lambda )$};
% Text Node
\draw (109,72) node [font=\small] {$\vec{A}$};
% Text Node
\draw (164,65) node [font=\small] {$\vec{B}$};
% Text Node
\draw (393,97) node [font=\small] {$\vec{A}$};
% Text Node
\draw (448,90) node [font=\small] {$\vec{B}$};
\end{tikzpicture}
\end{center}
\caption{Metric compatible parallel transports preserve angles between vectors.}
\end{figure}
\section{Geodesics}
We are now in the position to look at trajectories on which particle motion occurs. Consider a vector $\vec V$ which is defined as a vector parallel transported along itself.
\begin{figure}[h]
\begin{center}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Curve Lines [id:da197896422617873]
\draw (221,135) .. controls (261,105) and (356.5,118) .. (397.5,98) ;
%Straight Lines [id:da47255700142230217]
\draw (221,135) -- (255.77,115) ;
\draw [shift={(257.5,114)}, rotate = 510.09] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da16635069392869717]
\draw (272,118) -- (330.51,111.23) ;
\draw [shift={(332.5,111)}, rotate = 533.4] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da43701315094479787]
\draw (350,110) -- (390.54,101.41) ;
\draw [shift={(392.5,101)}, rotate = 528.04] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
% Text Node
\draw (223,116) node {$\vec{V}$};
\end{tikzpicture}
\end{center}
\caption{A vector $\vec V$ parallel transported along itself.}
\end{figure}
For a curve $x^\mu (\lambda)$ with tangent $V^\mu = \frac{ dx^\mu}{d\lambda}$. Then if $\nabla_{\vec V} \vec V = 0$, then the curve $x^\mu (\lambda)$ is called a \textbf{geodesic}. To use words words a geodesic is a curve whose tangent is parallel transported along itself. Written out in component form, $ V^\alpha \nabla_\alpha V^\mu = 0$, which leads to the geodesic equation
\begin{align}
\frac{d^2 x^\mu}{d \lambda ^2} + \Gamma^{\mu}_{\alpha \beta} \frac{dx^\alpha}{d\lambda} \frac{dx^\beta}{d\lambda} = 0
\end{align}
which is a $2^\text{nd}$ order ODE for the curve $x^\mu (\lambda)$ itself. Note, that sometimes the definition of a covariant derivative along a curve is written as
\begin{align}
\frac{D}{d \lambda} = V^\mu \nabla_\mu = \frac{dx^\mu}{d\lambda} \nabla_\mu.
\end{align}
In some sense this is Newton's equation written for general relativity. For gravitational forces, rather than using $F=ma$ to solve for the trajectories of particles we use $\frac{D}{d\lambda} \frac{x^\mu}{d\lambda} = 0$. Note that this will not be equal to zero but rather $\frac{F^\mu}{m}$ for non-gravitational forces where $F^\mu$ denotes the four-force and $m$ the mass of the particle.
We are now in the place to define the concept of a \textbf{test particle}. A test particle is one so small that it does not influence the spacetime around it. \\
\begin{minipage}{50em}
\textit{ \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad Particles in force free motion travel on geodesics}.
\end{minipage}
Since $\nabla_\nu$ preserves inner products on geodesics, particles will remain timelike or null on their trajectories.
\section{Symmetries}
Before we dive into symmetries let's first take stock of all the kinds of derivatives we have. Both the exterior derivative $\undertilde{d}$ and the Lie derivative $\mathcal{L}_{\vec V}$ return tensors. For a torsion free covariant derivative we can modify both of these definitions be replacing partial derivatives with covariant derivatives. The derivatives then take the form
\begin{align*}
\undertilde{d}\undertilde{\omega} &= \frac{1}{p!} \left( \nabla_\nu \omega_{\mu_1} ... d x^\nu \wedge dx^{\mu_1}\wedge...\right)\\
\mathcal{L}_{\vec V} \vec W &= \left[ \vec V, \vec W \right] = V^\alpha \nabla_\alpha W^\mu - W^\alpha \nabla_\alpha V^\mu
\end{align*}
Given a vector $\vec K$ we take the Lie derivative of the metric
\begin{align}
\left(\mathcal{L}_{\vec K} g \right)_{\mu \nu} &= K^\alpha \nabla_\alpha g_{\mu \nu} +\left( \nabla_\mu K^\alpha\right) g_{\alpha \nu} + \nabla _\nu K^\alpha g_{\alpha \mu}
\end{align}
The first term vanishes by metric compatibility leaving us with
\begin{align}
\left(\mathcal{L}_{\vec K} g \right)_{\mu \nu} &= \nabla_\mu K_\nu + \nabla_\nu K_\mu.
\end{align}
If $g_{\mu \nu}$ unchanged by the Lie derivative along $\vec K$, we have a symmetry of the spacetime and can write
\begin{align}\label{KillingEqn}
\mathcal{L}_{\vec K} g_{\mu \nu} = \nabla_\mu K_\nu + \nabla_\nu K_\mu= 0,
\end{align}
where $\vec K$ is a Killing vector and \ref{KillingEqn} is known as "Killing's equation".
\begin{figure}[h]
\begin{center}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Shape: Rectangle [id:dp3055312217430888]
\draw (188,66) -- (427.5,66) -- (427.5,187) -- (188,187) -- cycle ;
%Straight Lines [id:da23058480467600617]
\draw (219.5,90) -- (398.5,90) ;
\draw [shift={(400.5,90)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da12906004429010687]
\draw (219.5,112) -- (398.5,112) ;
\draw [shift={(400.5,112)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da7227705779009779]
\draw (220.5,133) -- (399.5,133) ;
\draw [shift={(401.5,133)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da8554229612585038]
\draw (220.5,155) -- (399.5,155) ;
\draw [shift={(401.5,155)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
% Text Node
\draw (201,94) node {$\vec{K}$};
\end{tikzpicture}
\end{center}
\caption{A Killing vector field $\vec K$ that leaves a metric unchanged is a symmetry of the spacetime.}
\end{figure}
Consider for example $\frac{dx^\mu}{d\tau} = U^\mu$ and $P^\mu = m U^\mu$, where $U^\mu$ is tangent to a geodesic. We can compute
\begin{align}
U^\alpha \nabla_ \alpha \left(P_\mu K^\mu\right) &= P_\mu U^\alpha \nabla_\alpha K^\mu+ \underbrace{\left( m U^\alpha \nabla_\alpha U_\mu\right)}_{=0 \text{ by geo. eqn.}} K^\mu \\
&= m U^\alpha U^\mu \nabla_\alpha K_\nu \\&= 0
\end{align}
Where the last line is zero by Killing's equation. This shows that the scalar $K^\beta P_\beta$ is conserved along a geodesic for any particle.
Another example is in the Schwarzschild metric $\partial_t$ is a Killing vector $\vec{\partial_t}$.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}