forked from aaronbzimmerman/PHY-387M
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLecture 5.tex
411 lines (298 loc) · 22.5 KB
/
Lecture 5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
\documentclass[11pt]{article}
\usepackage{NotesTeX} %/Path/to/package should be replaced with package location
\usepackage{lipsum}
\usepackage{tensor}
\usepackage{amsmath,amsthm,amssymb,amsfonts,amscd}
\usepackage{hyperref}
\usepackage{url}
\usepackage{color}
\usepackage{setspace}
\usepackage{enumitem}
\usepackage{undertilde}
\linespread{1}
\usepackage{tikz-cd}
\theoremstyle{plain}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{fact}[theorem]{Fact}
\newcommand{\bs}{\textbackslash}
\title{{\Huge General Relativity}\\{\Large{Class 5--- January 31, 2020}}} %replace with class number
\author{Carlos Perez}
\emailAdd{cjp3247@utexas.edu} %replace with your email
\begin{document}
\maketitle
\flushbottom
\newpage
\pagestyle{fancynotes}
\part{Vectors and covectors}
\section{Four-velocity}
We have been considering objects in a four-dimensional space traversing paths (curves) called worldlines. These worldlines are specified by four functions
\begin{align*}
t(\lambda) \\
x(\lambda) \\
y(\lambda) \\
z(\lambda)
\end{align*}
where we typically say that $\lambda$ is a parameter which increases along the worldline. However, for timelike curves there is a natural candidate to parameterise them, proper time $\tau$.
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{figure}[h!]
\begin{centering}
\begin{tikzpicture}[x=0.50pt,y=0.50pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,304.1079559326172); %set diagram left start at 0, and has height of 304.1079559326172
%Curve Lines [id:da41024636577771667]
\draw (283.79,247.11) .. controls (377.5,212.57) and (237.5,76.57) .. (332.79,38.11) ;
%Curve Lines [id:da4259021835539958]
\draw (299.5,167.57) .. controls (303.36,154.06) and (286.73,129.38) .. (289.16,111.49) ;
\draw [shift={(289.5,109.57)}, rotate = 462.53] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Curve Lines [id:da2913515390795469]
\draw (300.5,113.57) .. controls (401,69.14) and (292.5,136.57) .. (389.5,92.57) ;
%Shape: Circle [id:dp06661434454917625]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (297.82,113.57) .. controls (297.82,112.09) and (299.02,110.89) .. (300.5,110.89) .. controls (301.98,110.89) and (303.18,112.09) .. (303.18,113.57) .. controls (303.18,115.05) and (301.98,116.25) .. (300.5,116.25) .. controls (299.02,116.25) and (297.82,115.05) .. (297.82,113.57) -- cycle ;
% Text Node
\draw (281,151) node {$\tau $};
% Text Node
\draw (349,31) node {$Q$};
% Text Node
\draw (269,252) node {$P$};
% Text Node
\draw (424,89) node {$X^{\mu }( \tau )$};
\end{tikzpicture}
\caption{Any curve in spacetime between $P$ and $Q$ is just a specification of the coordinates parameterised by proper time.}
\end{centering}
\end{figure}
This gives us a unique parametrisation of our worldline as
\begin{equation}
X^{\mu} = X^{\mu}(\tau).
\end{equation}
Since our worldline is a curve in spacetime we can find the tangent vector at any point. We call this tangent vector the four-velocity
\begin{equation}
U^{\mu} = \frac{d X^{\mu}}{d \tau}.
\end{equation}
where we have omitted the evaluation at a point for simplicity. What we have written is not really a vector (as we will see) but the components of a vector (or a Lorentz vector ($\ref{eq0}$)). We can use the chain rule to write
\begin{align*}
U^{\mu} = \frac{d X^{\mu}}{d \tau} = \frac{d t}{d \tau}
\begin{pmatrix}
1 \\
V^{i}
\end{pmatrix} = \gamma \begin{pmatrix}
1 \\
V^{i}
\end{pmatrix}
\end{align*}
where in the last equality we have used a fact from the homework $\frac{d t}{d \tau} = \gamma$ and $\frac{d x}{d t} =V^{i}$ are the usual velocity compnents.
We observe that the four-velocity is a normalised timelike vector, which means that
\begin{equation}
U^{\mu} U^{\nu} \eta_{\mu \nu} = -1
\end{equation}
Furthermore, since
\begin{equation}
X^{\mu'} = \tensor{\Lambda}{^{\mu'}_\nu} X^{\nu} \Rightarrow U^{\mu'} = \frac{d x^{\mu '}}{d \tau} = \tensor{\Lambda}{^{\mu'}_\nu} \frac{X^{\nu}}{d \tau} = \tensor{\Lambda}{^{\mu'}_\nu} U^{\nu} \label{eq0}
\end{equation}
This provides the transformation rule for the four velocity.
\newpage
\section{Vectors}
We usually think of vectors as arrows or objects with direction and magnitude. In special relativity the spacetime is usually $\mathbb{R}^{4}$ or Minkowski spacetime. Both have the structure of a vector space, which means that it is natural to define vectors (and think of them as arrows) and operations between them. However this structure doesn’t extend to more general geometries, e.g. $S^{2}$ and so we need to ditch our notion of vectors as arrows
\begin{figure}[h!]
\begin{centering}
\begin{tikzpicture}[x=0.55pt,y=0.55pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,304.1079559326172); %set diagram left start at 0, and has height of 304.1079559326172
%Shape: Circle [id:dp5223199967668253]
\draw (207.17,139.38) .. controls (207.17,71.48) and (262.21,16.43) .. (330.12,16.43) .. controls (398.02,16.43) and (453.07,71.48) .. (453.07,139.38) .. controls (453.07,207.29) and (398.02,262.33) .. (330.12,262.33) .. controls (262.21,262.33) and (207.17,207.29) .. (207.17,139.38) -- cycle ;
%Curve Lines [id:da789045278227748]
\draw (374.25,144.21) .. controls (374.25,111.23) and (363.43,91.9) .. (352.74,74.8) ;
\draw [shift={(351.75,73.21)}, rotate = 417.85] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da8519735632881718]
\draw [dash pattern={on 4.5pt off 4.5pt}] (351.96,78.58) -- (371.44,142.32) ;
%Shape: Circle [id:dp029043217908276908]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (372.38,146.09) .. controls (372.38,145.05) and (373.21,144.21) .. (374.25,144.21) .. controls (375.29,144.21) and (376.13,145.05) .. (376.13,146.09) .. controls (376.13,147.12) and (375.29,147.96) .. (374.25,147.96) .. controls (373.21,147.96) and (372.38,147.12) .. (372.38,146.09) -- cycle ;
%Shape: Circle [id:dp1986761835680324]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (348,73.21) .. controls (348,72.18) and (348.84,71.34) .. (349.88,71.34) .. controls (350.91,71.34) and (351.75,72.18) .. (351.75,73.21) .. controls (351.75,74.25) and (350.91,75.09) .. (349.88,75.09) .. controls (348.84,75.09) and (348,74.25) .. (348,73.21) -- cycle ;
% Text Node
\draw (373.83,157.67) node {$P$};
% Text Node
\draw (340.67,58.17) node {$Q$};
\end{tikzpicture}
\caption{What does it mean for us to have a vector between points $P$ and $Q$? It can't pierce the sphere, but then how is it a straight line? How do we move the vector around?}
\end{centering}
\end{figure}
We want to think of vectors as living at tangent spaces to a point in spacetime. Take a point in a general (can be curved) spacetime, $P$, and construct a curve through that point. We can find the tangent vector to the curve at $P$ by taking derivatives. This vector will live in a surface which is tangent to our spacetime at point $P$. We call this surface $T_{P}$. We can also think about this surface as the span of all possible vectors tangent (at $P$) to all possible curves (through $P$). We give without proof the following fact:
\begin{proposition}
For an n-dimensional space, the set of all tangent vectors at $P$ forms a n-dimensional vector space, the tangent space $T_{P}$.
\end{proposition}
\begin{figure}[h!]
\begin{centering}
\begin{tikzpicture}[x=0.55pt,y=0.55pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,304.1079559326172); %set diagram left start at 0, and has height of 304.1079559326172
%Shape: Arc [id:dp515712647044624]
\draw [draw opacity=0] (53.77,236.25) .. controls (75.3,172.59) and (178.13,124.1) .. (302.01,123.68) .. controls (431.55,123.24) and (538.66,175.52) .. (554.04,243.37) -- (302.78,260.65) -- cycle ; \draw (53.77,236.25) .. controls (75.3,172.59) and (178.13,124.1) .. (302.01,123.68) .. controls (431.55,123.24) and (538.66,175.52) .. (554.04,243.37) ;
%Shape: Circle [id:dp7607951671123065]
\draw [color={rgb, 255:red, 0; green, 0; blue, 0 } ,draw opacity=1 ][fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (185,156.13) .. controls (185,154.68) and (186.18,153.5) .. (187.63,153.5) .. controls (189.07,153.5) and (190.25,154.68) .. (190.25,156.13) .. controls (190.25,157.57) and (189.07,158.75) .. (187.63,158.75) .. controls (186.18,158.75) and (185,157.57) .. (185,156.13) -- cycle ;
%Curve Lines [id:da245499437190823]
\draw (147.5,233.57) .. controls (154.5,189.57) and (183.5,144.57) .. (235.5,128.57) ;
\draw (151.71,204.41) -- (156.6,200.8) -- (158.01,206.72) ;
%Shape: Parallelogram [id:dp9966738975907927]
\draw (146.08,112.72) -- (311.72,98.32) -- (229.17,199.53) -- (63.53,213.93) -- cycle ;
%Straight Lines [id:da44457866811010316]
\draw [color={rgb, 255:red, 33; green, 62; blue, 232 } ,draw opacity=1 ] (187.63,156.13) -- (228.34,115.46) ;
\draw [shift={(229.75,114.04)}, rotate = 495.03] [color={rgb, 255:red, 33; green, 62; blue, 232 } ,draw opacity=1 ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
% Text Node
\draw (203,167) node {$P$};
% Text Node
\draw (170,218) node {$\lambda ( t)$};
% Text Node
\draw (158.5,120) node {$T_{P}$};
% Text Node
\draw (239,113) node [color={rgb, 255:red, 43; green, 54; blue, 226 } ,opacity=1 ] {$V$};
\end{tikzpicture}
\caption{Spacetime with a point $P$, curve through $P$ and a tangent space to that point}
\end{centering}
\end{figure}
Before we formalise these ideas into a concrete definition (won't be in this lecture), let us try to understand what we have constructed.
A vector in this setting is a geometric object which should be the same in any reference frame. The tangent space $T_{P}$ is in general an n-dimensional vector space and so it has a basis finite basis which we’ll denote by $\{\bar{e}_{(\mu)} \}_{\mu=1} ^{n}$. Therefore, for 4-dimensional spaces a vector will be:
\begin{equation}
\bar{V} = \bar{V^{\mu}} \bar{e}_{(\mu)}.
\end{equation}
Now, the basis vectors transform under Lorentz transformations as:
\begin{equation}
\bar{e}_{(\mu)} = \tensor{\Lambda}{^{\mu'}_\mu} \bar{e}_{(\mu')}
\end{equation}
while the components (just as for the four velocity) transform according to ($\ref{eq0}$):
Therefore,
\begin{equation}
\bar{V'} = V^{\mu'} \bar{e}_{(\mu')} = \tensor{\Lambda}{^{\mu'}_\nu} V^{\nu} \tensor{\Lambda}{^\alpha_{\mu'}} \bar{e}_{(\alpha)} = \tensor{\delta}{^\alpha_\nu} V^{\nu} \bar{e}_{(\alpha)} = V^{\nu} \bar{e}_{(\nu)} = \bar{V}
\end{equation}
where in the second equality we have used $\tensor{\Lambda}{^{\mu'}_\nu} \tensor{\Lambda}{^\alpha_{\mu'}} = \tensor{\delta}{^\alpha_\nu}$.
This means that a vector is invariant as promised.
\begin{figure}[h!]
\begin{centering}
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,304.1079559326172); %set diagram left start at 0, and has height of 304.1079559326172
%Shape: Axis 2D [id:dp2610095377421835]
\draw (199,224.2) -- (460.5,224.2)(225.15,52) -- (225.15,243.33) (453.5,219.2) -- (460.5,224.2) -- (453.5,229.2) (220.15,59) -- (225.15,52) -- (230.15,59) ;
%Straight Lines [id:da646452069675788]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ] (225.15,224.2) -- (225.33,131.24) ;
\draw [shift={(225.33,129.24)}, rotate = 450.11] [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da04757667323926107]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ] (225.15,224.2) -- (322.67,223.91) ;
\draw [shift={(324.67,223.91)}, rotate = 539.8299999999999] [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da4344813115704982]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ] (225.15,224.2) -- (324.8,186.61) ;
\draw [shift={(326.67,185.91)}, rotate = 519.3299999999999] [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da633873491282595]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ] (225.15,224.2) -- (259.96,131.78) ;
\draw [shift={(260.67,129.91)}, rotate = 470.64] [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
% Text Node
\draw (246,51) node {$t$};
% Text Node
\draw (476,224) node {$x$};
% Text Node
\draw (208.17,169.83) node [font=\small,color={rgb, 255:red, 74; green, 144; blue, 226 } ,opacity=1 ] {$\overline{e}_{( 0)}$};
% Text Node
\draw (279,235.67) node [font=\small,color={rgb, 255:red, 74; green, 144; blue, 226 } ,opacity=1 ] {$\overline{e}_{( 1)}$};
% Text Node
\draw (266.17,163.83) node [font=\small,color={rgb, 255:red, 208; green, 2; blue, 27 } ,opacity=1 ] {$\overline{e}_{( 0')}$};
% Text Node
\draw (309,206.33) node [font=\small,color={rgb, 255:red, 208; green, 2; blue, 27 } ,opacity=1 ] {$\overline{e}_{( 1')}$};
\end{tikzpicture}
\caption{2-dimensional spacetime with two sets of basis vectors, red and blue, are related by a Lorentz transformation.}
\end{centering}
\end{figure}
\newpage
\section{Dual vectors}
Now that we have some notion of vectors it is somewhat natural to ask about the dual space to the vector spaces we just constructed. Just as a reminder the dual vector space is the space of all linear functions from the vector space to a field (in our case the reals). In other words, we define a dual vector $\utilde{\omega}$ (or covector, or \textbf{one-form}) as:
\begin{align*}
\utilde{\omega} \colon T_{P} &\to \mathbb{R}\\
\bar{V} &\mapsto \utilde{\omega}(\bar{V}).
\end{align*}
The dual vectors at $P$ form a vector space, denoted $T^{*}_{P}$ when equipped with addition and scalar multiplication, which means that we can do basic operations like add them or multiply them by scalars:
\begin{equation}
(a \utilde{\alpha} + b \utilde{\beta})(\bar{V}) = a \utilde{\alpha}(\bar{V}) + b \utilde{\beta}(\bar{V}) \, , \hspace{3em} \text{for}\hspace{1.5em} a,\, b \in \mathbb{R}, \; \utilde{\alpha}, \, \utilde{\beta} \in T^{*}_{P}, \; \bar{V} \in T_{P}
\end{equation}
Furthermore, they also act linearly on vectors, i.e.:
\begin{equation}
\utilde{\omega} (a \bar{V}) + b \bar{U} ) =a \utilde{\omega} (\bar{V}) + b \utilde{\omega} (\bar{U} ) \, , \hspace{3em} \text{for}\hspace{1.5em} a,\, b \in \mathbb{R}, \; \utilde{\omega}\in T^{*}_{P}, \; \bar{V}, \, \bar{U} \in T_{P}
\end{equation}
As a vector space $T^{*}_{P}$ has the same dimension as $T_{P}$ (which in particular is finite) and hence we can find a finite basis: $\{\utilde{\theta}^{(\mu)} \}_{\mu=1} ^{n}$. In any basis our one forms are:
\begin{equation}
\utilde{\omega} = \omega_{\mu} \utilde{\theta}^{(\mu)}
\end{equation}
We emphasise that in this notation we use lower indices to denote components of a one-form while upper indices denote components of a vector. It turns out that there is an isomorphism (induced by the metric) between the tangent space and the cotangent space. There is a very special basis (called the dual basis) for which:
\begin{equation}
\utilde{\theta}^{(\mu)} (\bar{e}_{(\nu)}) = \tensor{\delta}{^\mu_\nu}
\end{equation}
Therefore, using this basis our index notation simplifies how one-forms act on vectors
\begin{equation}
\utilde{\omega} (\bar{V}) =\omega_{\mu} \utilde{\theta}^{(\mu)} ( V^{\nu} \bar{e}_{(\nu)} ) = \omega_{\mu} V^{\nu} \utilde{\theta}^{(\mu)} (\bar{e}_{(\nu)} ) = \omega_{\mu} V^{\nu} \tensor{\delta}{^\nu_\mu} = \omega_{\mu} V^{\mu}
\end{equation}
These dual vectors satisfy the following transformation rules
\begin{align}
\utilde{\theta}^{(\mu)} \rightarrow & \utilde{\theta}^{(\mu')} = \tensor{\Lambda}{^{\mu '}_{\nu}} \utilde{\theta}^{(\nu)} \\
\omega_{\mu } \rightarrow & \omega_{\mu '} = \tensor{\Lambda}{^\nu_{\mu '}} \omega_{\nu }
\end{align}
so that $\omega$ is invariant under Lorentz transformations in a similar fashion to
\begin{example}
Consider a smooth function from our spacetime to the reals. We define the gradient of $f$ at $P$ by
\begin{equation}
\utilde{d f} = \frac{\partial f}{\partial x^{\mu}} \utilde{\theta^{(\mu)}} = \partial_{\mu} f \utilde{\theta^{(\mu)}}
\end{equation}
Observe that we have used the notation where $\frac{\partial}{\partial x^{\mu}} \equiv \partial_{\mu}$. We will study the “d” operator we have used above, also known as an exterior derivative, in more detail later. This is a concrete example of a one form.
\end{example}
This example gives us some intuition on what the one-forms are or how to visualise them. Given a function $f$, we can represent the information by drawing isocontours (for example for a function over the plane). The gradient will be a vector perpendicular to these isocontours. In fact, we think about the isocontours themselves as a gradient. In this way the gradient (or a one-form) is a stack of sheets where $f$ is constant and a vector is an arrow. The action of a one-form on a vector is then given by the number of sheets penetrated by the vector.
\begin{figure}[h!]
\begin{centering}
\begin{tikzpicture}[x=0.70pt,y=0.70pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,304.1079559326172); %set diagram left start at 0, and has height of 304.1079559326172
%Shape: Rectangle [id:dp7984221331271688]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (101.5,41) -- (219.01,41) -- (219.01,171.33) -- (101.5,171.33) -- cycle ;
%Shape: Rectangle [id:dp9131146311865885]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (83.5,57) -- (202.81,57) -- (202.81,189.33) -- (83.5,189.33) -- cycle ;
%Shape: Rectangle [id:dp5316589056512595]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (65.5,74) -- (184.81,74) -- (184.81,206.33) -- (65.5,206.33) -- cycle ;
%Shape: Rectangle [id:dp46436570936672106]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (44.5,92) -- (163.81,92) -- (163.81,224.33) -- (44.5,224.33) -- cycle ;
%Shape: Rectangle [id:dp7726944496408961]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (26.5,112) -- (145.81,112) -- (145.81,244.33) -- (26.5,244.33) -- cycle ;
%Shape: Rectangle [id:dp4885583559184532]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (461.5,34) -- (579.01,34) -- (579.01,164.33) -- (461.5,164.33) -- cycle ;
%Shape: Rectangle [id:dp8738404898546548]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (443.5,50) -- (562.81,50) -- (562.81,182.33) -- (443.5,182.33) -- cycle ;
%Shape: Rectangle [id:dp8342724401529311]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (425.5,67) -- (544.81,67) -- (544.81,199.33) -- (425.5,199.33) -- cycle ;
%Shape: Rectangle [id:dp8431691965070685]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (404.5,85) -- (523.81,85) -- (523.81,217.33) -- (404.5,217.33) -- cycle ;
%Shape: Rectangle [id:dp07509518482128197]
\draw [fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (386.5,105) -- (505.81,105) -- (505.81,237.33) -- (386.5,237.33) -- cycle ;
%Shape: Brace [id:dp11568618380056628]
\draw (29,253) .. controls (29.03,257.67) and (31.37,259.99) .. (36.04,259.96) -- (76.79,259.72) .. controls (83.46,259.69) and (86.8,262) .. (86.83,266.67) .. controls (86.8,262) and (90.12,259.65) .. (96.79,259.61)(93.79,259.63) -- (137.54,259.37) .. controls (142.21,259.34) and (144.53,257) .. (144.5,252.33) ;
%Shape: Brace [id:dp8516349935546961]
\draw (383.67,252.33) .. controls (383.7,257) and (386.04,259.32) .. (390.71,259.29) -- (431.46,259.06) .. controls (438.13,259.02) and (441.47,261.33) .. (441.5,266) .. controls (441.47,261.33) and (444.79,258.98) .. (451.46,258.94)(448.46,258.96) -- (492.21,258.71) .. controls (496.88,258.68) and (499.2,256.34) .. (499.17,251.67) ;
%Straight Lines [id:da24948170133379488]
\draw (219.67,49.87) -- (247.59,21.95) ;
\draw [shift={(249,20.53)}, rotate = 495] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da033346015032755805]
\draw [dash pattern={on 4.5pt off 4.5pt}] (95,174.53) -- (219.95,49.58) ;
%Straight Lines [id:da2005386947727279]
\draw (95,174.53) -- (55.67,213.87) ;
%Straight Lines [id:da37288169047002717]
\draw (446.16,171.17) -- (446.16,7.71) ;
\draw [shift={(446.16,5.71)}, rotate = 450] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Shape: Brace [id:dp0768790353067752]
\draw (156,253) .. controls (159.55,256.03) and (162.84,255.78) .. (165.87,252.24) -- (193.06,220.51) .. controls (197.4,215.44) and (201.34,214.43) .. (204.88,217.47) .. controls (201.34,214.43) and (201.74,210.38) .. (206.07,205.32)(204.12,207.6) -- (233.26,173.58) .. controls (236.3,170.04) and (236.05,166.75) .. (232.5,163.71) ;
%Shape: Brace [id:dp7669478781425847]
\draw (515,249) .. controls (518.37,252.23) and (521.67,252.15) .. (524.9,248.78) -- (554.4,217.93) .. controls (559.01,213.11) and (563,212.31) .. (566.37,215.54) .. controls (563,212.31) and (563.61,208.29) .. (568.22,203.47)(566.15,205.64) -- (597.73,172.62) .. controls (600.96,169.25) and (600.88,165.95) .. (597.51,162.72) ;
% Text Node
\draw (85.33,274.67) node {$\omega $};
% Text Node
\draw (440,274) node {$\omega $};
% Text Node
\draw (229,14.71) node {$V$};
% Text Node
\draw (232,224.71) node {$\omega ( V)$};
% Text Node
\draw (428,25.71) node {$V$};
% Text Node
\draw (597,220.71) node {$\omega ( V) =0$};
\end{tikzpicture}
\caption{Graphical representation of a one-form. On the left the vector pierces through the stack of sheets giving a non zero action $\omega(V)$ but on the right the vector is perpendicular to the stack, thus $\omega(V) = 0$}
\end{centering}
\end{figure}
\end{document}