forked from Deci-AI/super-gradients
-
Notifications
You must be signed in to change notification settings - Fork 0
/
roboflow_yolo_nas_s.yaml
90 lines (68 loc) · 2.25 KB
/
roboflow_yolo_nas_s.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# A recipe to fine-tune YoloNAS on Roboflow datasets.
# Checkout the datasets at https://universe.roboflow.com/roboflow-100?ref=blog.roboflow.com
#
# `dataset_name` refers to the official name of the dataset.
# You can find it in the url of the dataset: https://universe.roboflow.com/roboflow-100/digits-t2eg6 -> digits-t2eg6
#
# Example: python -m super_gradients.train_from_recipe --config-name=roboflow_yolo_nas_s dataset_name=digits-t2eg6
defaults:
- training_hyperparams: coco2017_yolo_nas_train_params
- dataset_params: roboflow_detection_dataset_params
- checkpoint_params: default_checkpoint_params
- arch_params: yolo_nas_s_arch_params
- _self_
- variable_setup
train_dataloader: roboflow_train_yolox
val_dataloader: roboflow_val_yolox
dataset_name: ??? # Placeholder for the name of the dataset you want to use (e.g. "digits-t2eg6")
dataset_params:
dataset_name: ${dataset_name}
train_dataloader_params:
batch_size: 16
val_dataloader_params:
batch_size: 16
num_classes: ${roboflow_dataset_num_classes:${dataset_name}}
architecture: yolo_nas_s
arch_params:
num_classes: ${num_classes}
load_checkpoint: False
checkpoint_params:
pretrained_weights: coco
result_path: # By defaults saves results in checkpoints directory
resume: False
training_hyperparams:
resume: ${resume}
zero_weight_decay_on_bias_and_bn: True
lr_warmup_epochs: 3
warmup_mode: LinearEpochLRWarmup
initial_lr: 5e-4
cosine_final_lr_ratio: 0.1
optimizer_params:
weight_decay: 0.0001
ema: True
ema_params:
decay: 0.9
max_epochs: 100
mixed_precision: True
criterion_params:
num_classes: ${num_classes}
reg_max: 16
phase_callbacks: []
loss: PPYoloELoss
valid_metrics_list:
- DetectionMetrics_050:
score_thres: 0.1
top_k_predictions: 300
num_cls: ${num_classes}
normalize_targets: True
post_prediction_callback:
_target_: super_gradients.training.models.detection_models.pp_yolo_e.PPYoloEPostPredictionCallback
score_threshold: 0.01
nms_top_k: 1000
max_predictions: 300
nms_threshold: 0.7
metric_to_watch: 'mAP@0.50'
multi_gpu: Off
num_gpus: 1
experiment_suffix: ""
experiment_name: ${architecture}_roboflow_${dataset_name}${experiment_suffix}