-
Notifications
You must be signed in to change notification settings - Fork 43
/
TupleBenchmarks.jl
198 lines (148 loc) · 4.99 KB
/
TupleBenchmarks.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
module TupleBenchmarks
include(joinpath(dirname(@__FILE__), "..", "utils", "RandUtils.jl"))
using .RandUtils
using BenchmarkTools
const SUITE = BenchmarkGroup()
###############
# issue #5274 #
###############
struct TupleWrapper{N, T}
data::NTuple{N, T}
end
Base.eltype(::TupleWrapper{N,T}) where {N,T} = T
Base.length(::TupleWrapper{N,T}) where {N,T} = N
function get_index(n::NTuple, i::Int)
@inbounds v = n[i]
return v
end
function get_index(n::TupleWrapper, i::Int)
@inbounds v = n.data[i]
return v
end
function sum_tuple(n::Union{NTuple{N, T}, TupleWrapper{N, T}}) where {N, T}
s = zero(T)
for i in 1:N
s += get_index(n, i)
end
return s
end
const TUPLE_SUM_SIZES = (3, 8, 30, 60)
const TUPLE_SUM_TYPES = (Float32, Float64)
g = addgroup!(SUITE, "index", ["sum"])
for s in TUPLE_SUM_SIZES, T in TUPLE_SUM_TYPES
tup = tuple(samerand(T, s)...)
tupwrap = TupleWrapper(tup)
g["sumelt", "NTuple", s, T] = @benchmarkable sum_tuple($tup) time_tolerance=0.40
g["sumelt", "TupleWrapper", s, T] = @benchmarkable sum_tuple($tupwrap) time_tolerance=0.40
end
#####################
# Fixed Size Arrays #
#####################
# Short fixed size array implementation
abstract type FixedArray{T, N} <: AbstractArray{T, N} end
Base.IndexStyle(::Type{<: FixedArray}) = IndexLinear()
Base.getindex(fsa::FixedArray, i::Int) = fsa.data[i]
struct FixedVector{L, T} <: FixedArray{T, 1}
data::NTuple{L, T}
end
Base.size(::FixedVector{L}) where {L} = (L,)
Base.size(::Type{FixedVector{L, T}}) where {L, T} = (L,)
Base.length(::FixedVector{L}) where {L} = L
struct FixedMatrix{R, C, T, RC} <: FixedArray{T, 2}
data::NTuple{RC, T}
end
Base.size(::FixedMatrix{R, C}) where {R, C} = (R, C)
Base.size(::Type{FixedMatrix{R, C, T, RC}}) where {R, C, T, RC} = (R, C)
Base.length(::FixedMatrix{R, C, T, RC}) where {R, C, T, RC} = RC
# Reductions
@inline function perf_reduce(op, a::FixedArray)
if length(a) == 1
return a[1]
else
s = op(a[1], a[2])
for j = 3:length(a)
s = op(s, a[j])
end
return s
end
end
perf_minimum(a::FixedArray) = perf_reduce(min, a)
@inline function perf_reduce(op, v0, a::FixedArray)
if length(a) == 0
return v0
else
s = v0
@inbounds @simd for j = 1:length(a)
s = op(s, a[j])
end
return s
end
end
perf_sum(v::FixedArray{T}) where {T} = perf_reduce(+, zero(T), v)
@inline function perf_mapreduce(f, op, v0, a1::FixedArray)
if length(a1) == 0
return v0
else
s = op(v0, f(a1[1]))
for j = 2:length(a1)
s = op(s, f(a1[j]))
end
return s
end
end
perf_sumabs2(a::FixedArray{T}) where {T} = perf_mapreduce(abs2, +, zero(T), a)
# Linear Algebra
@generated function perf_matvec(A::FixedMatrix{R, C, T}, b::FixedVector{C, T}) where {R, C, T}
sA = size(A)
indA = LinearIndices(sA)
exprs = Expr(:tuple, [reduce((ex1,ex2) -> :(+($ex1,$ex2)),
[:(A[$(indA[k, j])]*b[$j]) for j = 1:sA[2]]) for k = 1:sA[1]]...)
return quote
@inbounds return FixedVector{R, T}($exprs)
end
end
@generated function perf_matmat(A::FixedMatrix{R1, C, T}, B::FixedMatrix{C, R2, T}) where {R1, R2, C, T}
sA, sB = size(A), size(B)
indA, indB = LinearIndices(sA), LinearIndices(sB)
exprs = Expr(:tuple, [reduce((ex1,ex2) -> :(+($ex1,$ex2)),
[:(A[$(indA[k1, j])] * B[$(indB[j, k2])]) for j = 1:sA[2]]) for k1 = 1:sA[1], k2 = 1:sB[2]]...)
result_type = FixedMatrix{R1, R2, T, (R1 * R2)}
return quote
@inbounds return $result_type($exprs)
end
end
# Benchmarks #
##############
v2, v4, v8, v16 = [FixedVector((rand(i)...,)) for i in (2, 4, 8, 16)]
m2x2, m4x4, m8x8, m16x16 = [FixedMatrix{i,i, Float64, i*i}((rand(i*i)...,)) for i in (2, 4, 8, 16)]
# Reductions
g = addgroup!(SUITE, "reduction", ["tuple"])
for mv in (v2, v4, v8, v16, m2x2, m4x4, m8x8, m16x16)
g["sum", size(mv)] = @benchmarkable perf_sum($mv)
g["sumabs", size(mv)] = @benchmarkable perf_sumabs2($mv)
g["minimum", size(mv)] = @benchmarkable perf_minimum($mv)
end
# Linear algebra
g = addgroup!(SUITE, "linear algebra", ["tuple"])
for (m, v) in zip((m2x2, m4x4, m8x8, m16x16), (v2, v4, v8, v16 ))
g["matvec", size(m), size(v)] = @benchmarkable perf_matvec($m, $v)
g["matmat", size(m), size(m)] = @benchmarkable perf_matmat($m, $m)
end
function _add( a::NTuple{4,Float32}, b::NTuple{4,Float32} )
(a[1]+b[1],a[2]+b[2],a[3]+b[3],a[4]+b[4])
end
function _mul( a::NTuple{4,Float32}, b::NTuple{4,Float32} )
(a[1]*b[1],a[2]*b[2],a[3]*b[3],a[4]*b[4])
end
function _madd( a::NTuple{4,Float32}, b::NTuple{4,Float32}, c::NTuple{4,Float32} )
_add(_mul(a,b),c)
end
perf_tuple_11899(t) = _madd(t, t, t)
g = addgroup!(SUITE, "misc", ["tuple"])
t = (Float32(1.0), Float32(2.0), Float32(3.0), Float32(4.0))
g["11899"] = @benchmarkable perf_tuple_11899($t)
# converting iterators to long tuples
let a = rand(150)
g["longtuple"] = @benchmarkable NTuple{150,Float64}($a)
end
end # module