-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.6.0-DEV-cbd854b0f4.log
411 lines (410 loc) · 33.1 KB
/
1.6.0-DEV-cbd854b0f4.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
Julia Version 1.6.0-DEV.185
Commit cbd854b0f4 (2020-06-06 13:20 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-9.0.1 (ORCJIT, skylake)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
JULIA_NUM_THREADS = 2
Resolving package versions...
Installed CompilerSupportLibraries_jll ─ v0.3.3+0
Installed OpenSpecFun_jll ────────────── v0.5.3+3
Installed SpecialFunctions ───────────── v0.10.3
Installed ForneyLab ──────────────────── v0.10.0
Updating `~/.julia/environments/v1.6/Project.toml`
[9fc3f58a] + ForneyLab v0.10.0
Updating `~/.julia/environments/v1.6/Manifest.toml`
[e66e0078] + CompilerSupportLibraries_jll v0.3.3+0
[9fc3f58a] + ForneyLab v0.10.0
[efe28fd5] + OpenSpecFun_jll v0.5.3+3
[276daf66] + SpecialFunctions v0.10.3
[2a0f44e3] + Base64
[ade2ca70] + Dates
[8ba89e20] + Distributed
[b77e0a4c] + InteractiveUtils
[76f85450] + LibGit2
[8f399da3] + Libdl
[37e2e46d] + LinearAlgebra
[56ddb016] + Logging
[d6f4376e] + Markdown
[44cfe95a] + Pkg
[de0858da] + Printf
[3fa0cd96] + REPL
[9a3f8284] + Random
[ea8e919c] + SHA
[9e88b42a] + Serialization
[6462fe0b] + Sockets
[2f01184e] + SparseArrays
[10745b16] + Statistics
[8dfed614] + Test
[cf7118a7] + UUIDs
[4ec0a83e] + Unicode
Testing ForneyLab
Status `/tmp/jl_NuL3ta/Project.toml`
[9fc3f58a] ForneyLab v0.10.0
[276daf66] SpecialFunctions v0.10.3
[2a0f44e3] Base64
[b77e0a4c] InteractiveUtils
[37e2e46d] LinearAlgebra
[de0858da] Printf
[2f01184e] SparseArrays
[10745b16] Statistics
[8dfed614] Test
Status `/tmp/jl_NuL3ta/Manifest.toml`
[e66e0078] CompilerSupportLibraries_jll v0.3.3+0
[9fc3f58a] ForneyLab v0.10.0
[efe28fd5] OpenSpecFun_jll v0.5.3+3
[276daf66] SpecialFunctions v0.10.3
[2a0f44e3] Base64
[ade2ca70] Dates
[8ba89e20] Distributed
[b77e0a4c] InteractiveUtils
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[44cfe95a] Pkg
[de0858da] Printf
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA
[9e88b42a] Serialization
[6462fe0b] Sockets
[2f01184e] SparseArrays
[10745b16] Statistics
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead.
│ caller = differentialEntropy(::ForneyLab.ProbabilityDistribution{ForneyLab.Univariate,ForneyLab.Gamma}) at gamma.jl:78
└ @ ForneyLab ~/.julia/packages/ForneyLab/Hz4kD/src/factor_nodes/gamma.jl:78
┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead.
│ caller = averageEnergy(::Type{ForneyLab.Gamma}, ::ForneyLab.ProbabilityDistribution{ForneyLab.Univariate,ForneyLab.Gamma}, ::ForneyLab.ProbabilityDistribution{ForneyLab.Univariate,ForneyLab.PointMass}, ::ForneyLab.ProbabilityDistribution{ForneyLab.Univariate,ForneyLab.PointMass}) at gamma.jl:86
└ @ ForneyLab ~/.julia/packages/ForneyLab/Hz4kD/src/factor_nodes/gamma.jl:86
┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead.
│ caller = (::ForneyLab.var"#65#67"{ForneyLab.ProbabilityDistribution{ForneyLab.MatrixVariate,ForneyLab.Wishart}})(::Int64) at none:0
└ @ ForneyLab ./none:0
┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead.
│ caller = (::ForneyLab.var"#69#70"{ForneyLab.ProbabilityDistribution{ForneyLab.Univariate,ForneyLab.PointMass}})(::Int64) at none:0
└ @ ForneyLab ./none:0
┌ Warning: `lbeta(x::Real, w::Real)` is deprecated, use `(logabsbeta(x, w))[1]` instead.
│ caller = differentialEntropy(::ForneyLab.ProbabilityDistribution{ForneyLab.Univariate,ForneyLab.Beta}) at beta.jl:84
└ @ ForneyLab ~/.julia/packages/ForneyLab/Hz4kD/src/factor_nodes/beta.jl:84
┌ Warning: `lbeta(x::Real, w::Real)` is deprecated, use `(logabsbeta(x, w))[1]` instead.
│ caller = averageEnergy(::Type{ForneyLab.Beta}, ::ForneyLab.ProbabilityDistribution{ForneyLab.Univariate,ForneyLab.Beta}, ::ForneyLab.ProbabilityDistribution{ForneyLab.Univariate,ForneyLab.PointMass}, ::ForneyLab.ProbabilityDistribution{ForneyLab.Univariate,ForneyLab.PointMass}) at beta.jl:92
└ @ ForneyLab ~/.julia/packages/ForneyLab/Hz4kD/src/factor_nodes/beta.jl:92
┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead.
│ caller = differentialEntropy(::ForneyLab.ProbabilityDistribution{ForneyLab.Multivariate,ForneyLab.Dirichlet}) at dirichlet.jl:107
└ @ ForneyLab ~/.julia/packages/ForneyLab/Hz4kD/src/factor_nodes/dirichlet.jl:107
┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead.
│ caller = _broadcast_getindex_evalf at broadcast.jl:648 [inlined]
└ @ Core ./broadcast.jl:648
┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead.
│ caller = averageEnergy(::Type{ForneyLab.Dirichlet}, ::ForneyLab.ProbabilityDistribution{ForneyLab.Multivariate,ForneyLab.Dirichlet}, ::ForneyLab.ProbabilityDistribution{ForneyLab.Multivariate,ForneyLab.PointMass}) at dirichlet.jl:129
└ @ ForneyLab ~/.julia/packages/ForneyLab/Hz4kD/src/factor_nodes/dirichlet.jl:129
┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead.
│ caller = differentialEntropy(::ForneyLab.ProbabilityDistribution{ForneyLab.MatrixVariate,ForneyLab.Dirichlet}) at dirichlet.jl:117
└ @ ForneyLab ~/.julia/packages/ForneyLab/Hz4kD/src/factor_nodes/dirichlet.jl:117
┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead.
│ caller = averageEnergy(::Type{ForneyLab.Dirichlet}, ::ForneyLab.ProbabilityDistribution{ForneyLab.MatrixVariate,ForneyLab.Dirichlet}, ::ForneyLab.ProbabilityDistribution{ForneyLab.MatrixVariate,ForneyLab.PointMass}) at dirichlet.jl:143
└ @ ForneyLab ~/.julia/packages/ForneyLab/Hz4kD/src/factor_nodes/dirichlet.jl:143
Nonlinear integration with given inverse: Test Failed at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:69
Expression: occursin("ruleSPNonlinearOutNG(nothing, messages[2], Main.ForneyLabTest.NonlinearTest.g)", algo)
Evaluated: occursin("ruleSPNonlinearOutNG(nothing, messages[2], Main.ForneyLabTest.NonlinearTest.g)", "begin\n\nfunction step!(data::Dict, marginals::Dict=Dict(), messages::Vector{Message}=Array{Message}(undef, 3))\n\nmessages[1] = ruleSPGaussianMeanVarianceOutNPP(nothing, Message(Univariate, PointMass, m=2.0), Message(Univariate, PointMass, m=3.0))\nmessages[2] = ruleSPGaussianMeanVarianceOutNPP(nothing, Message(Univariate, PointMass, m=2.0), Message(Univariate, PointMass, m=1.0))\nmessages[3] = ruleSPNonlinearOutNG(nothing, messages[2], g)\n\nmarginals[:y] = messages[1].dist * messages[3].dist\n\nreturn marginals\n\nend\n\nend # block")
Stacktrace:
[1] top-level scope at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:69
[2] top-level scope at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Test/src/Test.jl:1115
[3] top-level scope at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:61
Nonlinear integration with given inverse: Test Failed at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:74
Expression: occursin("ruleSPNonlinearIn1GG(messages[2], nothing, Main.ForneyLabTest.NonlinearTest.g, Main.ForneyLabTest.NonlinearTest.g_inv)", algo)
Evaluated: occursin("ruleSPNonlinearIn1GG(messages[2], nothing, Main.ForneyLabTest.NonlinearTest.g, Main.ForneyLabTest.NonlinearTest.g_inv)", "begin\n\nfunction step!(data::Dict, marginals::Dict=Dict(), messages::Vector{Message}=Array{Message}(undef, 3))\n\nmessages[1] = ruleSPGaussianMeanVarianceOutNPP(nothing, Message(Univariate, PointMass, m=2.0), Message(Univariate, PointMass, m=1.0))\nmessages[2] = ruleSPGaussianMeanVarianceOutNPP(nothing, Message(Univariate, PointMass, m=2.0), Message(Univariate, PointMass, m=3.0))\nmessages[3] = ruleSPNonlinearIn1GG(messages[2], nothing, g, g_inv)\n\nmarginals[:x] = messages[1].dist * messages[3].dist\n\nreturn marginals\n\nend\n\nend # block")
Stacktrace:
[1] top-level scope at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:74
[2] top-level scope at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Test/src/Test.jl:1115
[3] top-level scope at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:61
Nonlinear integration without given inverse: Test Failed at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:86
Expression: occursin("ruleSPNonlinearOutNG(nothing, messages[2], Main.ForneyLabTest.NonlinearTest.g)", algo)
Evaluated: occursin("ruleSPNonlinearOutNG(nothing, messages[2], Main.ForneyLabTest.NonlinearTest.g)", "begin\n\nfunction step!(data::Dict, marginals::Dict=Dict(), messages::Vector{Message}=Array{Message}(undef, 3))\n\nmessages[1] = ruleSPGaussianMeanVarianceOutNPP(nothing, Message(Univariate, PointMass, m=2.0), Message(Univariate, PointMass, m=3.0))\nmessages[2] = ruleSPGaussianMeanVarianceOutNPP(nothing, Message(Univariate, PointMass, m=2.0), Message(Univariate, PointMass, m=1.0))\nmessages[3] = ruleSPNonlinearOutNG(nothing, messages[2], g)\n\nmarginals[:y] = messages[1].dist * messages[3].dist\n\nreturn marginals\n\nend\n\nend # block")
Stacktrace:
[1] top-level scope at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:86
[2] top-level scope at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Test/src/Test.jl:1115
[3] top-level scope at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:78
Nonlinear integration without given inverse: Test Failed at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:92
Expression: occursin("ruleSPNonlinearIn1GG(messages[2], messages[1], Main.ForneyLabTest.NonlinearTest.g)", algo)
Evaluated: occursin("ruleSPNonlinearIn1GG(messages[2], messages[1], Main.ForneyLabTest.NonlinearTest.g)", "begin\n\nfunction init()\n\nmessages = Array{Message}(undef, 3)\nmessages[1] = Message(vague(GaussianMeanVariance))\n\nreturn messages\n\nend\n\nfunction step!(data::Dict, marginals::Dict=Dict(), messages::Vector{Message}=Array{Message}(undef, 3))\n\nmessages[1] = ruleSPGaussianMeanVarianceOutNPP(nothing, Message(Univariate, PointMass, m=2.0), Message(Univariate, PointMass, m=1.0))\nmessages[2] = ruleSPGaussianMeanVarianceOutNPP(nothing, Message(Univariate, PointMass, m=2.0), Message(Univariate, PointMass, m=3.0))\nmessages[3] = ruleSPNonlinearIn1GG(messages[2], messages[1], g)\n\nmarginals[:x] = messages[1].dist * messages[3].dist\n\nreturn marginals\n\nend\n\nend # block")
Stacktrace:
[1] top-level scope at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:92
[2] top-level scope at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Test/src/Test.jl:1115
[3] top-level scope at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/factor_nodes/test_nonlinear.jl:78
┌ Warning: `lfactorial(x)` is deprecated, use `logfactorial(x)` instead.
│ caller = (::ForneyLab.var"#106#107"{Float64})(::Int64) at float.jl:0
└ @ ForneyLab ./float.jl:0
┌ Warning: `lfactorial(x)` is deprecated, use `logfactorial(x)` instead.
│ caller = (::ForneyLab.var"#106#107"{Float64})(::Int64) at none:0
└ @ ForneyLab ./none:0
Test Summary: | Pass Fail Total
ForneyLab | 1471 4 1475
Helpers | 33 33
FactorNode | 193 193
Interface | 3 3
matches | 4 4
Univariate | 15 15
Multivariate | 12 12
MatrixVariate | 4 4
PointMass ProbabilityDistribution and Message construction | 12 12
dims | 4 4
isValid | 8 8
gaussianQuadrature | 3 3
@RV | 21 21
Edge | 6 6
disconnect! | 12 12
Variable | 3 3
associate! | 42 42
FactorGraph | 8 8
generateId | 3 3
addNode! | 4 4
@ensureVariables | 2 2
Clamp | 2 2
constant | 3 3
placeholder | 7 7
SPClamp | 9 9
SPEqualityGaussian | 11 11
SPEqualityGammaWishart | 13 13
SPEqualityBernoulli | 8 8
SPEqualityBeta | 8 8
SPEqualityCategorical | 8 8
SPEqualityDirichlet | 8 8
SPEqualityPointMass | 16 16
Addition node construction through + syntax | 4 4
Addition node construction through - syntax | 6 6
SPAdditionOutNGG | 7 7
SPAdditionIn2GGN | 5 5
SPAdditionIn1GNG | 5 5
SPAdditionOutNGP | 5 5
SPAdditionOutNPG | 5 5
SPAdditionIn1PNG | 5 5
SPAdditionIn2PGN | 5 5
SPAdditionIn1GNP | 5 5
SPAdditionIn2GPN | 5 5
SPAdditionOutNPP | 5 5
SPAdditionIn2PPN | 5 5
SPAdditionIn1PNP | 5 5
Multiplication node construction through * syntax | 4 4
SPMultiplicationOutNGP | 7 7
SPMultiplicationOutNPG | 6 6
SPMultiplicationOutNPP | 5 5
SPMultiplicationIn1GNP | 5 5
SPMultiplicationIn1PNP | 5 5
SPMultiplicationAGPN | 4 4
SPMultiplicationAPPN | 4 4
Exponential node construction through exp() syntax | 2 2
SPExponentialOutNG | 4 4
SPExponentialOutNP | 4 4
SPExponentialIn1LN | 4 4
SPExponentialIn1PN | 4 4
dims | 2 2
vague | 2 2
isProper | 5 5
== | 4 4
unsafe statistics | 16 16
convert | 4 4
SPGaussianMeanVarianceOutNPP | 6 6
SPGaussianMeanVarianceMPNP | 6 6
SPGaussianMeanVarianceOutNGP | 6 6
SPGaussianMeanVarianceMGNP | 6 6
VBGaussianMeanVarianceM | 6 6
VBGaussianMeanVarianceOut | 6 6
averageEnergy and differentialEntropy | 3 3
dims | 2 2
vague | 2 2
isProper | 5 5
== | 4 4
unsafe statistics | 16 16
convert | 4 4
SPGaussianMeanPrecisionOutNPP | 6 6
SPGaussianMeanPrecisionMPNP | 6 6
SPGaussianMeanPrecisionOutNGP | 6 6
SPGaussianMeanPrecisionMGNP | 6 6
VBGaussianMeanPrecisionM | 6 6
VBGaussianMeanPrecisionW | 5 5
VBGaussianMeanPrecisionOut | 5 5
SVBGaussianMeanPrecisionMGVD | 5 5
SVBGaussianMeanPrecisionW | 5 5
SVBGaussianMeanPrecisionOutVGD | 5 5
MGaussianMeanPrecisionGGD | 4 4
averageEnergy and differentialEntropy | 4 4
dims | 2 2
vague | 2 2
isProper | 5 5
== | 4 4
unsafe statistics | 16 16
convert | 4 4
SPGaussianWeightedMeanPrecisionOutNPP | 6 6
VBGaussianWeightedMeanPrecisionOut | 6 6
sample | 3 3
prod! | 8 8
dims | 1 1
vague | 1 1
prod! | 4 4
unsafe mean and variance | 2 2
SPGammaOutNPP | 4 4
VBGammaOut | 5 5
averageEnergy and differentialEntropy | 1 1
dims | 1 1
vague | 1 1
unsafe mean and variance | 6 6
Gamma approximatons to LogNormal | 1 1
prod! | 3 3
SPLogNormalOutNPP | 4 4
VBLogNormalOut | 5 5
averageEnergy and differentialEntropy | 1 1
dims | 1 1
vague | 1 1
isProper | 3 3
prod! | 4 4
unsafe mean and variance | 5 5
SPWishartOutNPP | 4 4
VBWishartOut | 5 5
averageEnergy and differentialEntropy | 2 2
Bernoulli ProbabilityDistribution and Message construction | 7 7
dims | 1 1
vague | 1 1
unsafe mean and variance | 2 2
prod! | 2 2
SPBernoulliOutNP | 4 4
SPBernoulliIn1PN | 4 4
SPBernoulliOutNB | 4 4
VBBernoulliOut | 6 6
VBBernoulliIn1 | 4 4
averageEnergy and differentialEntropy | 1 1
Categorical ProbabilityDistribution and Message construction | 7 7
dims | 1 1
vague | 2 2
unsafe mean and variance | 1 1
sample | 3 3
prod! | 3 3
SPCategoricalOutNP | 4 4
VBCategoricalOut | 6 6
VBCategoricalIn1 | 6 6
averageEnergy and differentialEntropy | 3 3
Contingency ProbabilityDistribution and Message construction | 4 4
dims | 1 1
vague | 2 2
differentialEntropy | 1 1
SPTransitionOutNPP | 5 5
SPTransitionIn1PNP | 4 4
SPTransitionOutNCP | 5 5
SPTransitionIn1CNP | 4 4
VBTransitionOut | 4 4
VBTransitionIn1 | 4 4
VBTransitionA | 4 4
SVBTransitionOutVCD | 4 4
SVBTransitionIn1CVD | 4 4
SVBTransitionADV | 4 4
MTransitionCCD | 3 3
averageEnergy | 2 2
Beta ProbabilityDistribution and Message construction | 7 7
dims | 1 1
vague | 1 1
unsafe mean and variance | 4 4
prod! | 4 4
SPBetaOutNPP | 4 4
VBBetaOut | 4 4
averageEnergy and differentialEntropy | 1 1
Dirichlet ProbabilityDistribution and Message construction | 9 9
dims | 2 2
vague | 2 2
unsafe mean and variance | 5 5
prod! | 8 8
SPDirichletOutNP | 5 5
VBDirichletOut | 5 5
averageEnergy and differentialEntropy | 4 4
VBGaussianMixtureM | 14 14
VBGaussianMixtureW | 14 14
VBGaussianMixtureZBer | 6 6
VBGaussianMixtureZCat | 6 6
VBGaussianMixtureOut | 8 8
averageEnergy | 4 4
mapToBernoulliParameterRange | 8 8
SPSigmoidBinNG | 5 5
EPSigmoidRealGB | 7 7
EPSigmoidRealGC | 7 7
EPSigmoidRealGP | 6 6
sigmaPointsAndWeights | 6 6
SPNonlinearOutNG | 5 5
SPNonlinearIn1GG | 7 7
Nonlinear integration with given inverse | 1 2 3
Nonlinear integration without given inverse | 3 2 5
SPDotProductOutNPG | 4 4
SPDotProductOutNGP | 4 4
SPDotProductIn1GNP | 4 4
SPDotProductIn2GPN | 4 4
Poisson ProbabilityDistribution construction | 4 4
Poisson Message construction | 4 4
dims | 1 1
slug | 1 1
vague | 1 1
isProper | 3 3
unsafe mean and variance | 2 2
SPPoissonOutNP | 4 4
SPPoissonLPN | 4 4
VBPoissonOut | 4 4
VBPoissonL | 5 5
averageEnergy and differentialEntropy | 3 3
Poisson node construction | 8 8
Parameter estimation | 1 1
LinkedList | 4 4
DependencyGraph | 23 23
Message | 10 10
matches | 13 13
ScheduleEntry | 1 1
summaryPropagationSchedule | 6 6
flatten | 4 4
MarginalScheduleEntry | 1 1
marginalSchedule | 8 8
@SumProductRule | 1 1
inferUpdateRule! | 4 4
sumProductSchedule | 4 4
RecognitionFactorization | 3 3
RecognitionFactor | 20 20
hasCollider() | 6 6
Cluster | 4 4
@marginalRule | 1 1
inferMarginalRule | 1 1
marginalSchedule | 13 13
@naiveVariationalRule | 1 1
inferUpdateRule! | 1 1
variationalSchedule | 7 7
@structuredVariationalRule | 3 3
inferUpdateRule! | 3 3
variationalSchedule | 14 14
@expectationPropagationRule | 1 1
inferUpdateRule! | 1 1
expectationPropagationSchedule | 5 5
variationalExpectationPropagationSchedule | 5 5
Julia messagePassingAlgorithm | 7 7
Julia algorithm execution | 1 1
@composite | 1 1
Composite node construction | 10 10
Custom SPStateTransitionX | 4 4
Composite node scheduling and algorithm compilation | 14 14
Composite node algorithm execution | 1 1
ERROR: LoadError: Some tests did not pass: 1471 passed, 4 failed, 0 errored, 0 broken.
in expression starting at /home/pkgeval/.julia/packages/ForneyLab/Hz4kD/test/runtests.jl:5
ERROR: Package ForneyLab errored during testing
Stacktrace:
[1] pkgerror(::String) at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/Types.jl:52
[2] test(::Pkg.Types.Context, ::Array{Pkg.Types.PackageSpec,1}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing) at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/Operations.jl:1561
[3] test(::Pkg.Types.Context, ::Array{Pkg.Types.PackageSpec,1}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, kwargs::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/API.jl:327
[4] test(::Pkg.Types.Context, ::Array{Pkg.Types.PackageSpec,1}) at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/API.jl:314
[5] #test#61 at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/API.jl:67 [inlined]
[6] test at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/API.jl:67 [inlined]
[7] #test#60 at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/API.jl:66 [inlined]
[8] test at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/API.jl:66 [inlined]
[9] test(::String; kwargs::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/API.jl:65
[10] test(::String) at /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Pkg/src/API.jl:65
[11] top-level scope at none:16