-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.6.0-DEV-f05b821fe7.log
220 lines (218 loc) · 46.2 KB
/
1.6.0-DEV-f05b821fe7.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
Julia Version 1.6.0-DEV.1218
Commit f05b821fe7 (2020-10-14 11:56 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: AMD EPYC 7502 32-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-11.0.0 (ORCJIT, znver2)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
JULIA_NUM_THREADS = 2
JULIA_MAX_NUM_PRECOMPILE_FILES = 9223372036854775807
Resolving package versions...
Installed CompilerSupportLibraries_jll ─ v0.3.3+0
Installed PDMats ─────────────────────── v0.10.1
Installed DataAPI ────────────────────── v1.3.0
Installed Compat ─────────────────────── v3.20.0
Installed StatsFuns ──────────────────── v0.9.5
Installed Tables ─────────────────────── v1.1.0
Installed OrderedCollections ─────────── v1.3.1
Installed Kalman ─────────────────────── v0.1.4
Installed Rmath_jll ──────────────────── v0.2.2+1
Installed GaussianDistributions ──────── v0.4.1
Installed Missings ───────────────────── v0.4.4
Installed QuadGK ─────────────────────── v2.4.1
Installed SpecialFunctions ───────────── v0.10.3
Installed IteratorInterfaceExtensions ── v1.0.0
Installed OpenSpecFun_jll ────────────── v0.5.3+3
Installed FillArrays ─────────────────── v0.9.7
Installed DataStructures ─────────────── v0.18.7
Installed Rmath ──────────────────────── v0.6.1
Installed DataValueInterfaces ────────── v1.0.0
Installed TableTraits ────────────────── v1.0.0
Installed Trajectories ───────────────── v0.2.2
Installed StaticArrays ───────────────── v0.12.4
Installed Distributions ──────────────── v0.23.12
Installed SortingAlgorithms ──────────── v0.3.1
Installed DynamicIterators ───────────── v0.4.1
Installed RecipesBase ────────────────── v1.1.0
Installed StatsBase ──────────────────── v0.33.2
Updating `~/.julia/environments/v1.6/Project.toml`
[d59c0ba6] + Kalman v0.1.4
Updating `~/.julia/environments/v1.6/Manifest.toml`
[34da2185] + Compat v3.20.0
[e66e0078] + CompilerSupportLibraries_jll v0.3.3+0
[9a962f9c] + DataAPI v1.3.0
[864edb3b] + DataStructures v0.18.7
[e2d170a0] + DataValueInterfaces v1.0.0
[31c24e10] + Distributions v0.23.12
[6c76993d] + DynamicIterators v0.4.1
[1a297f60] + FillArrays v0.9.7
[43dcc890] + GaussianDistributions v0.4.1
[82899510] + IteratorInterfaceExtensions v1.0.0
[d59c0ba6] + Kalman v0.1.4
[e1d29d7a] + Missings v0.4.4
[efe28fd5] + OpenSpecFun_jll v0.5.3+3
[bac558e1] + OrderedCollections v1.3.1
[90014a1f] + PDMats v0.10.1
[1fd47b50] + QuadGK v2.4.1
[3cdcf5f2] + RecipesBase v1.1.0
[79098fc4] + Rmath v0.6.1
[f50d1b31] + Rmath_jll v0.2.2+1
[a2af1166] + SortingAlgorithms v0.3.1
[276daf66] + SpecialFunctions v0.10.3
[90137ffa] + StaticArrays v0.12.4
[2913bbd2] + StatsBase v0.33.2
[4c63d2b9] + StatsFuns v0.9.5
[3783bdb8] + TableTraits v1.0.0
[bd369af6] + Tables v1.1.0
[2c80a279] + Trajectories v0.2.2
[56f22d72] + Artifacts
[2a0f44e3] + Base64
[ade2ca70] + Dates
[8bb1440f] + DelimitedFiles
[8ba89e20] + Distributed
[b77e0a4c] + InteractiveUtils
[76f85450] + LibGit2
[8f399da3] + Libdl
[37e2e46d] + LinearAlgebra
[56ddb016] + Logging
[d6f4376e] + Markdown
[a63ad114] + Mmap
[44cfe95a] + Pkg
[de0858da] + Printf
[3fa0cd96] + REPL
[9a3f8284] + Random
[ea8e919c] + SHA
[9e88b42a] + Serialization
[1a1011a3] + SharedArrays
[6462fe0b] + Sockets
[2f01184e] + SparseArrays
[10745b16] + Statistics
[4607b0f0] + SuiteSparse
[fa267f1f] + TOML
[8dfed614] + Test
[cf7118a7] + UUIDs
[4ec0a83e] + Unicode
Precompiling project... (tip: to disable auto-precompilation set ENV["JULIA_PKG_PRECOMPILE_AUTO"]=0)
[90m[32m ✓ [39mDataValueInterfaces[39m
[90m[32m ✓ [39mDataAPI[39m
[90m[32m ✓ [39mRecipesBase[39m
[90m[32m ✓ [39mIteratorInterfaceExtensions[39m
[90m[32m ✓ [39mTableTraits[39m
[90m[32m ✓ [39mOrderedCollections[39m
[90m[32m ✓ [39mPDMats[39m
[90m[32m ✓ [39mMissings[39m
[90m[32m ✓ [39mCompat[39m
[90m[32m ✓ [39mFillArrays[39m
[90m[32m ✓ [39mCompilerSupportLibraries_jll[39m
[90m[32m ✓ [39mTables[39m
[90m[32m ✓ [39mRmath_jll[39m
[90m[32m ✓ [39mTrajectories[39m
[90m[32m ✓ [39mRmath[39m
[90m[32m ✓ [39mOpenSpecFun_jll[39m
[90m[32m ✓ [39mDynamicIterators[39m
[90m[32m ✓ [39mDataStructures[39m
[90m[32m ✓ [39mSortingAlgorithms[39m
[90m[32m ✓ [39mQuadGK[39m
[90m[32m ✓ [39mStaticArrays[39m
[90m[32m ✓ [39mSpecialFunctions[39m
[90m[32m ✓ [39mStatsBase[39m
[90m[32m ✓ [39mStatsFuns[39m
[90m[32m ✓ [39mDistributions[39m
[90m[32m ✓ [39mGaussianDistributions[39m
[32m ✓ [39mKalman
27 dependencies successfully precompiled
Testing Kalman
Status `/tmp/jl_vtPE5Z/Project.toml`
[31c24e10] Distributions v0.23.12
[6c76993d] DynamicIterators v0.4.1
[43dcc890] GaussianDistributions v0.4.1
[d59c0ba6] Kalman v0.1.4
[90137ffa] StaticArrays v0.12.4
[2c80a279] Trajectories v0.2.2
[37e2e46d] LinearAlgebra
[9a3f8284] Random
[8dfed614] Test
Status `/tmp/jl_vtPE5Z/Manifest.toml`
[34da2185] Compat v3.20.0
[e66e0078] CompilerSupportLibraries_jll v0.3.3+0
[9a962f9c] DataAPI v1.3.0
[864edb3b] DataStructures v0.18.7
[e2d170a0] DataValueInterfaces v1.0.0
[31c24e10] Distributions v0.23.12
[6c76993d] DynamicIterators v0.4.1
[1a297f60] FillArrays v0.9.7
[43dcc890] GaussianDistributions v0.4.1
[82899510] IteratorInterfaceExtensions v1.0.0
[d59c0ba6] Kalman v0.1.4
[e1d29d7a] Missings v0.4.4
[efe28fd5] OpenSpecFun_jll v0.5.3+3
[bac558e1] OrderedCollections v1.3.1
[90014a1f] PDMats v0.10.1
[1fd47b50] QuadGK v2.4.1
[3cdcf5f2] RecipesBase v1.1.0
[79098fc4] Rmath v0.6.1
[f50d1b31] Rmath_jll v0.2.2+1
[a2af1166] SortingAlgorithms v0.3.1
[276daf66] SpecialFunctions v0.10.3
[90137ffa] StaticArrays v0.12.4
[2913bbd2] StatsBase v0.33.2
[4c63d2b9] StatsFuns v0.9.5
[3783bdb8] TableTraits v1.0.0
[bd369af6] Tables v1.1.0
[2c80a279] Trajectories v0.2.2
[56f22d72] Artifacts
[2a0f44e3] Base64
[ade2ca70] Dates
[8bb1440f] DelimitedFiles
[8ba89e20] Distributed
[b77e0a4c] InteractiveUtils
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[44cfe95a] Pkg
[de0858da] Printf
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA
[9e88b42a] Serialization
[1a1011a3] SharedArrays
[6462fe0b] Sockets
[2f01184e] SparseArrays
[10745b16] Statistics
[4607b0f0] SuiteSparse
[fa267f1f] TOML
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
Testing Running tests...
norm(mean(values(X)) - b) < eps() = false
cov(values(X)) = [5.1604943724263075 1.3424052499237742; 1.3424052499237742 2.4320134184822746]
cov((values(U))[end]) = [5.063895153119588 1.2968591691995948; 1.296859169199595 2.342059679053502]
Y = Trajectory{Vector{Int64}, Vector{Float64}}([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1.9848869350498366, 0.14900935051894693, 0.2052797762484746, 3.160658890756962, -1.3734603955299056, -0.8138549757972726, -1.230852583495249, 0.24173749526573146, 1.5912253977477482, 2.650359041229351])
X = Trajectory{Vector{Int64}, Vector{Tuple{Float64, Float64}}}([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], [(1.683252209052981, 1.9848869350498366), (-1.8494477486009178, 0.14900935051894693), (0.5235623143448767, 0.2052797762484746), (1.7833608426709362, 3.160658890756962), (-1.4138714930925909, -1.3734603955299056), (-1.2219182676940394, -0.8138549757972726), (-0.7262564595785823, -1.230852583495249), (-0.03453127210515278, 0.24173749526573146), (2.6750917740186564, 1.5912253977477482), (2.48379304056021, 2.650359041229351), (0.5207121455103455, -0.26914480163952503), (1.6046356788980796, 0.19925324865065663), (-0.05513440391928681, -0.6254458216833895), (1.2781141170937131, 2.8265135453393615), (1.642357237023805, 2.6000863885967327), (-0.6773137409566674, 0.09352892493809983), (-3.2856402242204443, -3.9843319040080076), (-0.8318623880430367, -0.2400666386528788), (-1.1925256700263422, -0.8507559504764998), (-1.4041261937888523, -0.3255783403301029), (0.04832866966984939, -0.723203219066552), (-2.600861973407852, -3.1405574568556096), (-2.497128857083019, -2.2668326566044126), (-2.4815423638900915, -1.3761237915478404), (-0.8375312040858602, -2.596640289545254), (0.7114924193187716, -0.2076929739426494), (0.08383922648249542, 1.3211448087471367), (0.7937983765706673, 0.39918762965189536), (-0.4587585686283405, 0.466833775460063), (0.9278675218699279, 1.6784810316654561), (-1.6760032288732787, -2.621908403549025), (-1.6262428889288414, -2.08414124517038), (-1.3471685790042174, -0.651894880109747), (-0.09420431307517863, -1.5337186495440462), (0.3252504585143525, -0.16277295551123994), (2.1560956513325786, 2.042114073304546), (0.3639870446577922, 0.1274139200253383), (1.3622243022877512, 0.29077477637919036), (0.9095032587646034, 0.8833367681144595), (-0.3156293525433342, 1.2202416327932246), (0.5103312848449252, 1.1724518050501116), (-2.0245160898391807, -2.5508682552746658), (-3.8913456991192312, -5.282677134311763), (-2.737947442041502, -3.4134889141315443), (-2.0260626988624386, -3.197267872783563), (-2.8411551634944567, -4.008558046872284), (-1.1219307095809539, -0.7788590009915209), (-0.7319092727861713, -0.2596900009374283), (-0.033305582152113544, -0.5726627617735869), (0.06354955079531442, -1.163485586325153), (-2.640303402003478, -2.5496901769399276), (-3.009283915125831, -3.460138807785346), (-0.1838662639675428, -0.4954672209502454), (-3.266547452218008, -5.516502359906486), (0.48881254239004424, 1.336759959908995), (1.7419558061462983, 2.216589567826035), (0.889387293438088, 0.22914055725835347), (0.28210753257743315, -0.4265219482897499), (1.2611042724731327, 0.5784689423713496), (-0.35792282506407225, -0.17923265956647297), (0.41097828643834977, -0.788502438286746), (-0.2222543817408001, 0.5151328370366803), (0.9417391723682246, 1.3942648136013382), (0.3389009195328981, 0.29927148145404214), (2.053924621553441, 1.1285940021478829), (2.4015856763816927, 2.3623510901291107), (0.8179579887235213, 1.6242073904277188), (0.3252283111242185, 1.4291515416156242), (0.23867432773438277, 0.816603017782002), (1.2625062360432437, 1.4404000154487382), (-0.5022890571489835, -0.25956413346827323), (1.3415150138827747, 1.539600072974158), (0.3673858852620288, 2.215023406163257), (1.080333461569732, 0.6607148336873373), (1.048396691210253, 0.3488795257345455), (0.6198846202364066, 1.0320221565804004), (0.027084518135522317, -1.0807175982289121), (-4.4161543056899415, -6.477542582843338), (-0.038602811145718174, -1.320916510898461), (0.11374207358541835, -0.015339919354494636), (0.6330161755720819, -0.924231660552053), (1.1687229557462742, 2.608912341275138), (1.4129921210859187, 1.766961783432519), (-0.4481571387924457, -1.431072173288873), (-1.6541853726137028, -0.5127812788068229), (-1.5448135098038707, -1.8427990234393326), (-0.1488380165352441, 1.3552651061862215), (-0.06139569080222084, 0.22853134644927875), (0.7023605963082603, -0.7818997404366174), (0.556985611072186, 1.3127431503696432), (-1.2018291194686785, -0.6425547019891267), (0.18448968758274475, -0.1553579819474667), (-1.042924275308532, 0.4116480418142132), (0.663974580006163, 2.768092991825325), (-0.05216087860786878, 1.1175824920238546), (1.3861262808080668, 1.7251543159367189), (1.0854512123428557, 1.0437255157145326), (0.5388015648196042, 0.4974162403061984), (2.728121948893291, 2.304811833050203), (2.321184816526909, 2.7172707292268248)])
Xf1 = Trajectory{Vector{Int64}, Vector{Gaussian{Float64, Float64}}}([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], Gaussian{Float64, Float64}[Gaussian{Float64, Float64}(1.5279986473421945, 0.6923076923076923), Gaussian{Float64, Float64}(0.34282437236083674, 0.6848484848484848), Gaussian{Float64, Float64}(0.1946000775170283, 0.6846631629240325), Gaussian{Float64, Float64}(2.19465488650328, 0.6846585558778109), Gaussian{Float64, Float64}(-0.5943183073460236, 0.6846584413463395), Gaussian{Float64, Float64}(-0.6509193084276058, 0.6846584384990785), Gaussian{Float64, Float64}(-0.945344563339658, 0.6846584384282953), Gaussian{Float64, Float64}(0.01645440060352149, 0.6846584384265357), Gaussian{Float64, Float64}(1.092040274197082, 0.684658438426492), Gaussian{Float64, Float64}(1.9867735251208547, 0.6846584384264909), Gaussian{Float64, Float64}(0.12898387335113315, 0.6846584384264908), Gaussian{Float64, Float64}(0.1567574060927369, 0.6846584384264908), Gaussian{Float64, Float64}(-0.4035006969813746, 0.6846584384264908), Gaussian{Float64, Float64}(1.8715760802023185, 0.6846584384264908), Gaussian{Float64, Float64}(2.075263948457926, 0.6846584384264908), Gaussian{Float64, Float64}(0.39124385478779244, 0.6846584384264908), Gaussian{Float64, Float64}(-2.6662187355085583, 0.6846584384264908), Gaussian{Float64, Float64}(-0.5847484397142847, 0.6846584384264908), Gaussian{Float64, Float64}(-0.674674983588873, 0.6846584384264908), Gaussian{Float64, Float64}(-0.32928648951564526, 0.6846584384264908), Gaussian{Float64, Float64}(-0.547066044535578, 0.6846584384264908), Gaussian{Float64, Float64}(-2.236465494583279, 0.6846584384264908), Gaussian{Float64, Float64}(-1.9046313675785318, 0.6846584384264908), Gaussian{Float64, Float64}(-1.2424794810397375, 0.6846584384264908), Gaussian{Float64, Float64}(-1.9737143956824217, 0.6846584384264908), Gaussian{Float64, Float64}(-0.4533958370290332, 0.6846584384264908), Gaussian{Float64, Float64}(0.8330456660622476, 0.6846584384264908), Gaussian{Float64, Float64}(0.40465413975569564, 0.6846584384264908), Gaussian{Float64, Float64}(0.3834238178751028, 0.6846584384264908), Gaussian{Float64, Float64}(1.2096409348051622, 0.6846584384264908), Gaussian{Float64, Float64}(-1.6043866826088191, 0.6846584384264908), Gaussian{Float64, Float64}(-1.6798897913093978, 0.6846584384264908), Gaussian{Float64, Float64}(-0.7111948656656149, 0.6846584384264908), Gaussian{Float64, Float64}(-1.1622080653434415, 0.6846584384264908), Gaussian{Float64, Float64}(-0.2946901306377541, 0.6846584384264908), Gaussian{Float64, Float64}(1.3516866095296456, 0.6846584384264908), Gaussian{Float64, Float64}(0.3003564986218862, 0.6846584384264908), Gaussian{Float64, Float64}(0.2464388479816771, 0.6846584384264908), Gaussian{Float64, Float64}(0.6436401778394084, 0.6846584384264908), Gaussian{Float64, Float64}(0.9369319801968656, 0.6846584384264908), Gaussian{Float64, Float64}(0.9504558188376497, 0.6846584384264908), Gaussian{Float64, Float64}(-1.5966143652286133, 0.6846584384264908), Gaussian{Float64, Float64}(-3.868568911070165, 0.6846584384264908), Gaussian{Float64, Float64}(-2.9470342702712387, 0.6846584384264908), Gaussian{Float64, Float64}(-2.6536976234101717, 0.6846584384264908), Gaussian{Float64, Float64}(-3.1629036689685583, 0.6846584384264908), Gaussian{Float64, Float64}(-1.031949878412835, 0.6846584384264908), Gaussian{Float64, Float64}(-0.3405072935789417, 0.6846584384264908), Gaussian{Float64, Float64}(-0.4457664430630819, 0.6846584384264908), Gaussian{Float64, Float64}(-0.8668745677913998, 0.6846584384264908), Gaussian{Float64, Float64}(-1.8823476849629042, 0.6846584384264908), Gaussian{Float64, Float64}(-2.6658044620774555, 0.6846584384264908), Gaussian{Float64, Float64}(-0.7595452847478749, 0.6846584384264908), Gaussian{Float64, Float64}(-3.8966779893987216, 0.6846584384264908), Gaussian{Float64, Float64}(0.30083172563929317, 0.6846584384264908), Gaussian{Float64, Float64}(1.5650391252071973, 0.6846584384264908), Gaussian{Float64, Float64}(0.4036439569459184, 0.6846584384264908), Gaussian{Float64, Float64}(-0.22837899321916647, 0.6846584384264908), Gaussian{Float64, Float64}(0.360044948586033, 0.6846584384264908), Gaussian{Float64, Float64}(-0.06594458465192149, 0.6846584384264908), Gaussian{Float64, Float64}(-0.5502523822436106, 0.6846584384264908), Gaussian{Float64, Float64}(0.26593132104961964, 0.6846584384264908), Gaussian{Float64, Float64}(0.9965247690588412, 0.6846584384264908), Gaussian{Float64, Float64}(0.3620215835687548, 0.6846584384264908), Gaussian{Float64, Float64}(0.8297816328710159, 0.6846584384264908), Gaussian{Float64, Float64}(1.7482359263201963, 0.6846584384264908), Gaussian{Float64, Float64}(1.3876730191133682, 0.6846584384264908), Gaussian{Float64, Float64}(1.197276151157683, 0.6846584384264908), Gaussian{Float64, Float64}(0.7478696125393777, 0.6846584384264908), Gaussian{Float64, Float64}(1.1040992110223977, 0.6846584384264908), Gaussian{Float64, Float64}(-0.003628589623971945, 0.6846584384264908), Gaussian{Float64, Float64}(1.0535280592046319, 0.6846584384264908), Gaussian{Float64, Float64}(1.6826450580174108, 0.6846584384264908), Gaussian{Float64, Float64}(0.7176679463621701, 0.6846584384264908), Gaussian{Float64, Float64}(0.3520185767369387, 0.6846584384264908), Gaussian{Float64, Float64}(0.7620857219914314, 0.6846584384264908), Gaussian{Float64, Float64}(-0.619763772370608, 0.6846584384264908), Gaussian{Float64, Float64}(-4.532622827503635, 0.6846584384264908), Gaussian{Float64, Float64}(-1.6190388158678746, 0.6846584384264908), Gaussian{Float64, Float64}(-0.26577771945278705, 0.6846584384264908), Gaussian{Float64, Float64}(-0.674688385999735, 0.6846584384264908), Gaussian{Float64, Float64}(1.6798352049607024, 0.6846584384264908), Gaussian{Float64, Float64}(1.4746262237634276, 0.6846584384264908), Gaussian{Float64, Float64}(-0.7472901713701607, 0.6846584384264908), Gaussian{Float64, Float64}(-0.46890585439641924, 0.6846584384264908), Gaussian{Float64, Float64}(-1.3356206538999993, 0.6846584384264908), Gaussian{Float64, Float64}(0.7173053399200419, 0.6846584384264908), Gaussian{Float64, Float64}(0.269564007799168, 0.6846584384264908), Gaussian{Float64, Float64}(-0.4928318877117113, 0.6846584384264908), Gaussian{Float64, Float64}(0.8210754868550362, 0.6846584384264908), Gaussian{Float64, Float64}(-0.3104708857701764, 0.6846584384264908), Gaussian{Float64, Float64}(-0.1553193402881825, 0.6846584384264908), Gaussian{Float64, Float64}(0.2573489838353206, 0.6846584384264908), Gaussian{Float64, Float64}(1.935774640418433, 0.6846584384264908), Gaussian{Float64, Float64}(1.070377382783812, 0.6846584384264908), Gaussian{Float64, Float64}(1.3499086976739614, 0.6846584384264908), Gaussian{Float64, Float64}(0.9274366400880802, 0.6846584384264908), Gaussian{Float64, Float64}(0.4867898855089498, 0.6846584384264908), Gaussian{Float64, Float64}(1.6547614118103406, 0.6846584384264908), Gaussian{Float64, Float64}(2.1213098580703784, 0.6846584384264908)])
Xf2 = Trajectory{Vector{Int64}, Vector{Gaussian{Float64, Float64}}}([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], Gaussian{Float64, Float64}[Gaussian{Float64, Float64}(1.5279986473421945, 0.6923076923076923), Gaussian{Float64, Float64}(0.34282437236083674, 0.6848484848484848), Gaussian{Float64, Float64}(0.1946000775170283, 0.6846631629240325), Gaussian{Float64, Float64}(2.19465488650328, 0.6846585558778109), Gaussian{Float64, Float64}(-0.5943183073460236, 0.6846584413463395), Gaussian{Float64, Float64}(-0.6509193084276058, 0.6846584384990785), Gaussian{Float64, Float64}(-0.945344563339658, 0.6846584384282953), Gaussian{Float64, Float64}(0.01645440060352149, 0.6846584384265357), Gaussian{Float64, Float64}(1.092040274197082, 0.684658438426492), Gaussian{Float64, Float64}(1.9867735251208547, 0.6846584384264909), Gaussian{Float64, Float64}(0.12898387335113315, 0.6846584384264908), Gaussian{Float64, Float64}(0.1567574060927369, 0.6846584384264908), Gaussian{Float64, Float64}(-0.4035006969813746, 0.6846584384264908), Gaussian{Float64, Float64}(1.8715760802023185, 0.6846584384264908), Gaussian{Float64, Float64}(2.075263948457926, 0.6846584384264908), Gaussian{Float64, Float64}(0.39124385478779244, 0.6846584384264908), Gaussian{Float64, Float64}(-2.6662187355085583, 0.6846584384264908), Gaussian{Float64, Float64}(-0.5847484397142847, 0.6846584384264908), Gaussian{Float64, Float64}(-0.674674983588873, 0.6846584384264908), Gaussian{Float64, Float64}(-0.32928648951564526, 0.6846584384264908), Gaussian{Float64, Float64}(-0.547066044535578, 0.6846584384264908), Gaussian{Float64, Float64}(-2.236465494583279, 0.6846584384264908), Gaussian{Float64, Float64}(-1.9046313675785318, 0.6846584384264908), Gaussian{Float64, Float64}(-1.2424794810397375, 0.6846584384264908), Gaussian{Float64, Float64}(-1.9737143956824217, 0.6846584384264908), Gaussian{Float64, Float64}(-0.4533958370290332, 0.6846584384264908), Gaussian{Float64, Float64}(0.8330456660622476, 0.6846584384264908), Gaussian{Float64, Float64}(0.40465413975569564, 0.6846584384264908), Gaussian{Float64, Float64}(0.3834238178751028, 0.6846584384264908), Gaussian{Float64, Float64}(1.2096409348051622, 0.6846584384264908), Gaussian{Float64, Float64}(-1.6043866826088191, 0.6846584384264908), Gaussian{Float64, Float64}(-1.6798897913093978, 0.6846584384264908), Gaussian{Float64, Float64}(-0.7111948656656149, 0.6846584384264908), Gaussian{Float64, Float64}(-1.1622080653434415, 0.6846584384264908), Gaussian{Float64, Float64}(-0.2946901306377541, 0.6846584384264908), Gaussian{Float64, Float64}(1.3516866095296456, 0.6846584384264908), Gaussian{Float64, Float64}(0.3003564986218862, 0.6846584384264908), Gaussian{Float64, Float64}(0.2464388479816771, 0.6846584384264908), Gaussian{Float64, Float64}(0.6436401778394084, 0.6846584384264908), Gaussian{Float64, Float64}(0.9369319801968656, 0.6846584384264908), Gaussian{Float64, Float64}(0.9504558188376497, 0.6846584384264908), Gaussian{Float64, Float64}(-1.5966143652286133, 0.6846584384264908), Gaussian{Float64, Float64}(-3.868568911070165, 0.6846584384264908), Gaussian{Float64, Float64}(-2.9470342702712387, 0.6846584384264908), Gaussian{Float64, Float64}(-2.6536976234101717, 0.6846584384264908), Gaussian{Float64, Float64}(-3.1629036689685583, 0.6846584384264908), Gaussian{Float64, Float64}(-1.031949878412835, 0.6846584384264908), Gaussian{Float64, Float64}(-0.3405072935789417, 0.6846584384264908), Gaussian{Float64, Float64}(-0.4457664430630819, 0.6846584384264908), Gaussian{Float64, Float64}(-0.8668745677913998, 0.6846584384264908), Gaussian{Float64, Float64}(-1.8823476849629042, 0.6846584384264908), Gaussian{Float64, Float64}(-2.6658044620774555, 0.6846584384264908), Gaussian{Float64, Float64}(-0.7595452847478749, 0.6846584384264908), Gaussian{Float64, Float64}(-3.8966779893987216, 0.6846584384264908), Gaussian{Float64, Float64}(0.30083172563929317, 0.6846584384264908), Gaussian{Float64, Float64}(1.5650391252071973, 0.6846584384264908), Gaussian{Float64, Float64}(0.4036439569459184, 0.6846584384264908), Gaussian{Float64, Float64}(-0.22837899321916647, 0.6846584384264908), Gaussian{Float64, Float64}(0.360044948586033, 0.6846584384264908), Gaussian{Float64, Float64}(-0.06594458465192149, 0.6846584384264908), Gaussian{Float64, Float64}(-0.5502523822436106, 0.6846584384264908), Gaussian{Float64, Float64}(0.26593132104961964, 0.6846584384264908), Gaussian{Float64, Float64}(0.9965247690588412, 0.6846584384264908), Gaussian{Float64, Float64}(0.3620215835687548, 0.6846584384264908), Gaussian{Float64, Float64}(0.8297816328710159, 0.6846584384264908), Gaussian{Float64, Float64}(1.7482359263201963, 0.6846584384264908), Gaussian{Float64, Float64}(1.3876730191133682, 0.6846584384264908), Gaussian{Float64, Float64}(1.197276151157683, 0.6846584384264908), Gaussian{Float64, Float64}(0.7478696125393777, 0.6846584384264908), Gaussian{Float64, Float64}(1.1040992110223977, 0.6846584384264908), Gaussian{Float64, Float64}(-0.003628589623971945, 0.6846584384264908), Gaussian{Float64, Float64}(1.0535280592046319, 0.6846584384264908), Gaussian{Float64, Float64}(1.6826450580174108, 0.6846584384264908), Gaussian{Float64, Float64}(0.7176679463621701, 0.6846584384264908), Gaussian{Float64, Float64}(0.3520185767369387, 0.6846584384264908), Gaussian{Float64, Float64}(0.7620857219914314, 0.6846584384264908), Gaussian{Float64, Float64}(-0.619763772370608, 0.6846584384264908), Gaussian{Float64, Float64}(-4.532622827503635, 0.6846584384264908), Gaussian{Float64, Float64}(-1.6190388158678746, 0.6846584384264908), Gaussian{Float64, Float64}(-0.26577771945278705, 0.6846584384264908), Gaussian{Float64, Float64}(-0.674688385999735, 0.6846584384264908), Gaussian{Float64, Float64}(1.6798352049607024, 0.6846584384264908), Gaussian{Float64, Float64}(1.4746262237634276, 0.6846584384264908), Gaussian{Float64, Float64}(-0.7472901713701607, 0.6846584384264908), Gaussian{Float64, Float64}(-0.46890585439641924, 0.6846584384264908), Gaussian{Float64, Float64}(-1.3356206538999993, 0.6846584384264908), Gaussian{Float64, Float64}(0.7173053399200419, 0.6846584384264908), Gaussian{Float64, Float64}(0.269564007799168, 0.6846584384264908), Gaussian{Float64, Float64}(-0.4928318877117113, 0.6846584384264908), Gaussian{Float64, Float64}(0.8210754868550362, 0.6846584384264908), Gaussian{Float64, Float64}(-0.3104708857701764, 0.6846584384264908), Gaussian{Float64, Float64}(-0.1553193402881825, 0.6846584384264908), Gaussian{Float64, Float64}(0.2573489838353206, 0.6846584384264908), Gaussian{Float64, Float64}(1.935774640418433, 0.6846584384264908), Gaussian{Float64, Float64}(1.070377382783812, 0.6846584384264908), Gaussian{Float64, Float64}(1.3499086976739614, 0.6846584384264908), Gaussian{Float64, Float64}(0.9274366400880802, 0.6846584384264908), Gaussian{Float64, Float64}(0.4867898855089498, 0.6846584384264908), Gaussian{Float64, Float64}(1.6547614118103406, 0.6846584384264908), Gaussian{Float64, Float64}(2.1213098580703784, 0.6846584384264908)])
Xf = Trajectory{Vector{Int64}, Vector{Tuple{Gaussian{Float64, Float64}, Gaussian{Float64, Float64}, Float64}}}([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], Tuple{Gaussian{Float64, Float64}, Gaussian{Float64, Float64}, Float64}[(Gaussian{Float64, Float64}(1.5279986473421945, 0.6923076923076923), Gaussian{Float64, Float64}(0.5, 2.25), -1.8474797559726799), (Gaussian{Float64, Float64}(0.34282437236083674, 0.6848484848484848), Gaussian{Float64, Float64}(0.7639993236710972, 2.173076923076923), -3.4033663143764428), (Gaussian{Float64, Float64}(0.1946000775170283, 0.6846631629240325), Gaussian{Float64, Float64}(0.17141218618041837, 2.1712121212121214), -4.899542639123223), (Gaussian{Float64, Float64}(2.19465488650328, 0.6846585558778109), Gaussian{Float64, Float64}(0.09730003875851415, 2.171165790731008), -7.875139269881843), (Gaussian{Float64, Float64}(-0.5943183073460236, 0.6846584413463395), Gaussian{Float64, Float64}(1.09732744325164, 2.1711646389694526), -10.33367465837692), (Gaussian{Float64, Float64}(-0.6509193084276058, 0.6846584384990785), Gaussian{Float64, Float64}(-0.2971591536730118, 2.171164610336585), -11.871756733576099), (Gaussian{Float64, Float64}(-0.945344563339658, 0.6846584384282953), Gaussian{Float64, Float64}(-0.3254596542138029, 2.1711646096247694), -13.496993190711587), (Gaussian{Float64, Float64}(0.01645440060352149, 0.6846584384265357), Gaussian{Float64, Float64}(-0.472672281669829, 2.171164609607074), -15.073453399195767), (Gaussian{Float64, Float64}(1.092040274197082, 0.684658438426492), Gaussian{Float64, Float64}(0.008227200301760745, 2.1711646096066337), -16.964545960363665), (Gaussian{Float64, Float64}(1.9867735251208547, 0.6846584384264909), Gaussian{Float64, Float64}(0.546020137098541, 2.171164609606623), -19.1587383550277), (Gaussian{Float64, Float64}(0.12898387335113315, 0.6846584384264908), Gaussian{Float64, Float64}(0.9933867625604273, 2.1711646096066226), -20.906051350203725), (Gaussian{Float64, Float64}(0.1567574060927369, 0.6846584384264908), Gaussian{Float64, Float64}(0.06449193667556657, 2.1711646096066226), -22.40490273373364), (Gaussian{Float64, Float64}(-0.4035006969813746, 0.6846584384264908), Gaussian{Float64, Float64}(0.07837870304636844, 2.1711646096066226), -23.97899593047), (Gaussian{Float64, Float64}(1.8715760802023185, 0.6846584384264908), Gaussian{Float64, Float64}(-0.2017503484906873, 2.1711646096066226), -26.920885239521667), (Gaussian{Float64, Float64}(2.075263948457926, 0.6846584384264908), Gaussian{Float64, Float64}(0.9357880401011592, 2.1711646096066226), -28.8536037854915), (Gaussian{Float64, Float64}(0.39124385478779244, 0.6846584384264908), Gaussian{Float64, Float64}(1.037631974228963, 2.1711646096066226), -30.490128557818373), (Gaussian{Float64, Float64}(-2.6662187355085583, 0.6846584384264908), Gaussian{Float64, Float64}(0.19562192739389622, 2.1711646096066226), -34.74094263804528), (Gaussian{Float64, Float64}(-0.5847484397142847, 0.6846584384264908), Gaussian{Float64, Float64}(-1.3331093677542791, 2.1711646096066226), -36.425306592078776), (Gaussian{Float64, Float64}(-0.674674983588873, 0.6846584384264908), Gaussian{Float64, Float64}(-0.29237421985714235, 2.1711646096066226), -37.970454775370314), (Gaussian{Float64, Float64}(-0.32928648951564526, 0.6846584384264908), Gaussian{Float64, Float64}(-0.3373374917944365, 2.1711646096066226), -39.4664645634959), (Gaussian{Float64, Float64}(-0.547066044535578, 0.6846584384264908), Gaussian{Float64, Float64}(-0.16464324475782263, 2.1711646096066226), -41.01164413711793), (Gaussian{Float64, Float64}(-2.236465494583279, 0.6846584384264908), Gaussian{Float64, Float64}(-0.273533022267789, 2.1711646096066226), -43.80365899637416), (Gaussian{Float64, Float64}(-1.9046313675785318, 0.6846584384264908), Gaussian{Float64, Float64}(-1.1182327472916396, 2.1711646096066226), -45.50765916601983), (Gaussian{Float64, Float64}(-1.2424794810397375, 0.6846584384264908), Gaussian{Float64, Float64}(-0.9523156837892659, 2.1711646096066226), -47.03196692297602), (Gaussian{Float64, Float64}(-1.9737143956824217, 0.6846584384264908), Gaussian{Float64, Float64}(-0.6212397405198687, 2.1711646096066226), -49.14321898512702), (Gaussian{Float64, Float64}(-0.4533958370290332, 0.6846584384264908), Gaussian{Float64, Float64}(-0.9868571978412108, 2.1711646096066226), -50.734928411221816), (Gaussian{Float64, Float64}(0.8330456660622476, 0.6846584384264908), Gaussian{Float64, Float64}(-0.2266979185145166, 2.1711646096066226), -52.60866675109716), (Gaussian{Float64, Float64}(0.40465413975569564, 0.6846584384264908), Gaussian{Float64, Float64}(0.4165228330311238, 2.1711646096066226), -54.10470211841099), (Gaussian{Float64, Float64}(0.3834238178751028, 0.6846584384264908), Gaussian{Float64, Float64}(0.20232706987784782, 2.1711646096066226), -55.61172135073939), (Gaussian{Float64, Float64}(1.2096409348051622, 0.6846584384264908), Gaussian{Float64, Float64}(0.1917119089375514, 2.1711646096066226), -57.45623782627533), (Gaussian{Float64, Float64}(-1.6043866826088191, 0.6846584384264908), Gaussian{Float64, Float64}(0.6048204674025811, 2.1711646096066226), -60.59385916894601), (Gaussian{Float64, Float64}(-1.6798897913093978, 0.6846584384264908), Gaussian{Float64, Float64}(-0.8021933413044096, 2.1711646096066226), -62.34896180668356), (Gaussian{Float64, Float64}(-0.7111948656656149, 0.6846584384264908), Gaussian{Float64, Float64}(-0.8399448956546989, 2.1711646096066226), -63.85052547406798), (Gaussian{Float64, Float64}(-1.1622080653434415, 0.6846584384264908), Gaussian{Float64, Float64}(-0.3555974328328074, 2.1711646096066226), -65.56535571058936), (Gaussian{Float64, Float64}(-0.2946901306377541, 0.6846584384264908), Gaussian{Float64, Float64}(-0.5811040326717207, 2.1711646096066226), -67.0889362233543), (Gaussian{Float64, Float64}(1.3516866095296456, 0.6846584384264908), Gaussian{Float64, Float64}(-0.14734506531887706, 2.1711646096066226), -69.34075556919518), (Gaussian{Float64, Float64}(0.3003564986218862, 0.6846584384264908), Gaussian{Float64, Float64}(0.6758433047648228, 2.1711646096066226), -70.88416695096429), (Gaussian{Float64, Float64}(0.2464388479816771, 0.6846584384264908), Gaussian{Float64, Float64}(0.1501782493109431, 2.1711646096066226), -72.38327167552443), (Gaussian{Float64, Float64}(0.6436401778394084, 0.6846584384264908), Gaussian{Float64, Float64}(0.12321942399083854, 2.1711646096066226), -73.97035842910373), (Gaussian{Float64, Float64}(0.9369319801968656, 0.6846584384264908), Gaussian{Float64, Float64}(0.3218200889197042, 2.1711646096066226), -75.59361216262529), (Gaussian{Float64, Float64}(0.9504558188376497, 0.6846584384264908), Gaussian{Float64, Float64}(0.4684659900984328, 2.1711646096066226), -77.1677411610418), (Gaussian{Float64, Float64}(-1.5966143652286133, 0.6846584384264908), Gaussian{Float64, Float64}(0.47522790941882487, 2.1711646096066226), -80.10756116522953), (Gaussian{Float64, Float64}(-3.868568911070165, 0.6846584384264908), Gaussian{Float64, Float64}(-0.7983071826143067, 2.1711646096066226), -84.7742413633876), (Gaussian{Float64, Float64}(-2.9470342702712387, 0.6846584384264908), Gaussian{Float64, Float64}(-1.9342844555350824, 2.1711646096066226), -86.61522024363481), (Gaussian{Float64, Float64}(-2.6536976234101717, 0.6846584384264908), Gaussian{Float64, Float64}(-1.4735171351356193, 2.1711646096066226), -88.57969803857685), (Gaussian{Float64, Float64}(-3.1629036689685583, 0.6846584384264908), Gaussian{Float64, Float64}(-1.3268488117050858, 2.1711646096066226), -91.20958560185046), (Gaussian{Float64, Float64}(-1.031949878412835, 0.6846584384264908), Gaussian{Float64, Float64}(-1.5814518344842792, 2.1711646096066226), -92.80713804985245), (Gaussian{Float64, Float64}(-0.3405072935789417, 0.6846584384264908), Gaussian{Float64, Float64}(-0.5159749392064175, 2.1711646096066226), -94.31348216306192), (Gaussian{Float64, Float64}(-0.4457664430630819, 0.6846584384264908), Gaussian{Float64, Float64}(-0.17025364678947086, 2.1711646096066226), -95.83500226649706), (Gaussian{Float64, Float64}(-0.8668745677913998, 0.6846584384264908), Gaussian{Float64, Float64}(-0.22288322153154094, 2.1711646096066226), -97.47048676500702), (Gaussian{Float64, Float64}(-1.8823476849629042, 0.6846584384264908), Gaussian{Float64, Float64}(-0.4334372838956999, 2.1711646096066226), -99.6726074904375), (Gaussian{Float64, Float64}(-2.6658044620774555, 0.6846584384264908), Gaussian{Float64, Float64}(-0.9411738424814521, 2.1711646096066226), -102.16904567000701), (Gaussian{Float64, Float64}(-0.7595452847478749, 0.6846584384264908), Gaussian{Float64, Float64}(-1.3329022310387277, 2.1711646096066226), -103.77560776379889), (Gaussian{Float64, Float64}(-3.8966779893987216, 0.6846584384264908), Gaussian{Float64, Float64}(-0.37977264237393743, 2.1711646096066226), -109.43189574016586), (Gaussian{Float64, Float64}(0.30083172563929317, 0.6846584384264908), Gaussian{Float64, Float64}(-1.9483389946993608, 2.1711646096066226), -112.62944710567182), (Gaussian{Float64, Float64}(1.5650391252071973, 0.6846584384264908), Gaussian{Float64, Float64}(0.15041586281964658, 2.1711646096066226), -114.79854328746559), (Gaussian{Float64, Float64}(0.4036439569459184, 0.6846584384264908), Gaussian{Float64, Float64}(0.7825195626035987, 2.1711646096066226), -116.34281453212145), (Gaussian{Float64, Float64}(-0.22837899321916647, 0.6846584384264908), Gaussian{Float64, Float64}(0.2018219784729592, 2.1711646096066226), -117.90105347912778), (Gaussian{Float64, Float64}(0.360044948586033, 0.6846584384264908), Gaussian{Float64, Float64}(-0.11418949660958323, 2.1711646096066226), -119.47268807619506), (Gaussian{Float64, Float64}(-0.06594458465192149, 0.6846584384264908), Gaussian{Float64, Float64}(0.1800224742930165, 2.1711646096066226), -120.98902572323573), (Gaussian{Float64, Float64}(-0.5502523822436106, 0.6846584384264908), Gaussian{Float64, Float64}(-0.032972292325960745, 2.1711646096066226), -122.57501625882607), (Gaussian{Float64, Float64}(0.26593132104961964, 0.6846584384264908), Gaussian{Float64, Float64}(-0.2751261911218053, 2.1711646096066226), -124.16947111852747), (Gaussian{Float64, Float64}(0.9965247690588412, 0.6846584384264908), Gaussian{Float64, Float64}(0.13296566052480982, 2.1711646096066226), -125.91629369497213), (Gaussian{Float64, Float64}(0.3620215835687548, 0.6846584384264908), Gaussian{Float64, Float64}(0.4982623845294206, 2.1711646096066226), -127.41852503049769), (Gaussian{Float64, Float64}(0.8297816328710159, 0.6846584384264908), Gaussian{Float64, Float64}(0.1810107917843774, 2.1711646096066226), -129.05608780836715), (Gaussian{Float64, Float64}(1.7482359263201963, 0.6846584384264908), Gaussian{Float64, Float64}(0.41489081643550796, 2.1711646096066226), -131.15005823664413), (Gaussian{Float64, Float64}(1.3876730191133682, 0.6846584384264908), Gaussian{Float64, Float64}(0.8741179631600982, 2.1711646096066226), -132.73475718797988), (Gaussian{Float64, Float64}(1.197276151157683, 0.6846584384264908), Gaussian{Float64, Float64}(0.6938365095566841, 2.1711646096066226), -134.31599590384562), (Gaussian{Float64, Float64}(0.7478696125393777, 0.6846584384264908), Gaussian{Float64, Float64}(0.5986380755788415, 2.1711646096066226), -135.81947462597782), (Gaussian{Float64, Float64}(1.1040992110223977, 0.6846584384264908), Gaussian{Float64, Float64}(0.37393480626968884, 2.1711646096066226), -137.49478916562924), (Gaussian{Float64, Float64}(-0.003628589623971945, 0.6846584384264908), Gaussian{Float64, Float64}(0.5520496055111989, 2.1711646096066226), -139.09463755324947), (Gaussian{Float64, Float64}(1.0535280592046319, 0.6846584384264908), Gaussian{Float64, Float64}(-0.0018142948119859725, 2.1711646096066226), -140.96524473193264), (Gaussian{Float64, Float64}(1.6826450580174108, 0.6846584384264908), Gaussian{Float64, Float64}(0.5267640296023159, 2.1711646096066226), -142.91062908678188), (Gaussian{Float64, Float64}(0.7176679463621701, 0.6846584384264908), Gaussian{Float64, Float64}(0.8413225290087054, 2.1711646096066226), -144.4117601577743), (Gaussian{Float64, Float64}(0.3520185767369387, 0.6846584384264908), Gaussian{Float64, Float64}(0.35883397318108506, 2.1711646096066226), -145.90776376731503), (Gaussian{Float64, Float64}(0.7620857219914314, 0.6846584384264908), Gaussian{Float64, Float64}(0.17600928836846935, 2.1711646096066226), -147.51928628390036), (Gaussian{Float64, Float64}(-0.619763772370608, 0.6846584384264908), Gaussian{Float64, Float64}(0.3810428609957157, 2.1711646096066226), -149.35217630776597), (Gaussian{Float64, Float64}(-4.532622827503635, 0.6846584384264908), Gaussian{Float64, Float64}(-0.309881886185304, 2.1711646096066226), -156.8459668601288), (Gaussian{Float64, Float64}(-1.6190388158678746, 0.6846584384264908), Gaussian{Float64, Float64}(-2.2663114137518177, 2.1711646096066226), -158.48287649968293), (Gaussian{Float64, Float64}(-0.26577771945278705, 0.6846584384264908), Gaussian{Float64, Float64}(-0.8095194079339373, 2.1711646096066226), -160.07831076746606), (Gaussian{Float64, Float64}(-0.674688385999735, 0.6846584384264908), Gaussian{Float64, Float64}(-0.13288885972639353, 2.1711646096066226), -161.67303589015341), (Gaussian{Float64, Float64}(1.6798352049607024, 0.6846584384264908), Gaussian{Float64, Float64}(-0.3373441929998675, 2.1711646096066226), -164.53767366779098), (Gaussian{Float64, Float64}(1.4746262237634276, 0.6846584384264908), Gaussian{Float64, Float64}(0.8399176024803512, 2.1711646096066226), -166.16916564331092), (Gaussian{Float64, Float64}(-0.7472901713701607, 0.6846584384264908), Gaussian{Float64, Float64}(0.7373131118817138, 2.1711646096066226), -168.40650504470506), (Gaussian{Float64, Float64}(-0.46890585439641924, 0.6846584384264908), Gaussian{Float64, Float64}(-0.37364508568508037, 2.1711646096066226), -169.9055453602487), (Gaussian{Float64, Float64}(-1.3356206538999993, 0.6846584384264908), Gaussian{Float64, Float64}(-0.23445292719820962, 2.1711646096066226), -171.8093925214036), (Gaussian{Float64, Float64}(0.7173053399200419, 0.6846584384264908), Gaussian{Float64, Float64}(-0.6678103269499996, 2.1711646096066226), -173.95070087241643), (Gaussian{Float64, Float64}(0.269564007799168, 0.6846584384264908), Gaussian{Float64, Float64}(0.35865266996002093, 2.1711646096066226), -175.44935847029905), (Gaussian{Float64, Float64}(-0.4928318877117113, 0.6846584384264908), Gaussian{Float64, Float64}(0.134782003899584, 2.1711646096066226), -177.07783806781435), (Gaussian{Float64, Float64}(0.8210754868550362, 0.6846584384264908), Gaussian{Float64, Float64}(-0.24641594385585566, 2.1711646096066226), -178.95712010804868), (Gaussian{Float64, Float64}(-0.3104708857701764, 0.6846584384264908), Gaussian{Float64, Float64}(0.4105377434275181, 2.1711646096066226), -180.62796557288294), (Gaussian{Float64, Float64}(-0.1553193402881825, 0.6846584384264908), Gaussian{Float64, Float64}(-0.1552354428850882, 2.1711646096066226), -182.12395356103212), (Gaussian{Float64, Float64}(0.2573489838353206, 0.6846584384264908), Gaussian{Float64, Float64}(-0.07765967014409125, 2.1711646096066226), -183.65769140632224), (Gaussian{Float64, Float64}(1.935774640418433, 0.6846584384264908), Gaussian{Float64, Float64}(0.1286744919176603, 2.1711646096066226), -186.25209761936185), (Gaussian{Float64, Float64}(1.070377382783812, 0.6846584384264908), Gaussian{Float64, Float64}(0.9678873202092165, 2.1711646096066226), -187.75161879361258), (Gaussian{Float64, Float64}(1.3499086976739614, 0.6846584384264908), Gaussian{Float64, Float64}(0.535188691391906, 2.1711646096066226), -189.47087147264108), (Gaussian{Float64, Float64}(0.9274366400880802, 0.6846584384264908), Gaussian{Float64, Float64}(0.6749543488369807, 2.1711646096066226), -190.98830145060253), (Gaussian{Float64, Float64}(0.4867898855089498, 0.6846584384264908), Gaussian{Float64, Float64}(0.4637183200440401, 2.1711646096066226), -192.48446847941247), (Gaussian{Float64, Float64}(1.6547614118103406, 0.6846584384264908), Gaussian{Float64, Float64}(0.2433949427544749, 2.1711646096066226), -194.65046892413795), (Gaussian{Float64, Float64}(2.1213098580703784, 0.6846584384264908), Gaussian{Float64, Float64}(0.8273807059051703, 2.1711646096066226), -196.7096071622639)])
x = (0.8416261045264904, 1.143260830523346)
Y = [1 => 1.143260830523346, 2 => -0.27180370174429824, 3 => -0.005126749883147985]
Xs = Trajectory{Vector{Int64}, Vector{Gaussian{Float64, Float64}}}([1, 2, 3], Gaussian{Float64, Float64}[Gaussian{Float64, Float64}(0.8643510050565579, 0.6536072623029144), Gaussian{Float64, Float64}(-0.035728679238326344, 0.6478738652651695), Gaussian{Float64, Float64}(-0.00937261312848638, 0.6846631629240325)])
μ = [0.5, 0.25, 0.125, 0.5, 0.25, 0.125]
Σ = [2.25 1.125 0.5625 2.25 1.125 0.5625; 1.125 2.5625000000000004 1.2812500000000002 1.125 2.5625000000000004 1.2812500000000002; 0.5625 1.2812500000000002 2.6406250000000004 0.5625 1.2812500000000002 2.6406250000000004; 2.25 1.125 0.5625 3.25 1.125 0.5625; 1.125 2.5625000000000004 1.2812500000000002 1.125 3.5625000000000004 1.2812500000000002; 0.5625 1.2812500000000002 2.6406250000000004 0.5625 1.2812500000000002 3.6406250000000004]
v = [1.143260830523346, -0.27180370174429824, -0.005126749883147985]
x = (1.683252209052981, 1.9848869350498366)
Y = [1 => 1.9848869350498366, 2 => 0.14900935051894693, 3 => 0.2052797762484746]
Xs = Trajectory{Vector{Int64}, Vector{Gaussian{Float64, Float64}}}([1, 2, 3], Gaussian{Float64, Float64}[Gaussian{Float64, Float64}(1.4451109073975514, 0.4794952681388013), Gaussian{Float64, Float64}(0.3438949726798403, 0.6435331230283912), Gaussian{Float64, Float64}(0.1941690129456231, 0.6845425867507886)])
μ = [1.0, 0.5, 0.25, 1.0, 0.5, 0.25]
Σ = [1.0 0.5 0.25 1.0 0.5 0.25; 0.5 2.2500000000000004 1.1250000000000002 0.5 2.2500000000000004 1.1250000000000002; 0.25 1.1250000000000002 2.5625000000000004 0.25 1.1250000000000002 2.5625000000000004; 1.0 0.5 0.25 2.0 0.5 0.25; 0.5 2.2500000000000004 1.1250000000000002 0.5 3.2500000000000004 1.1250000000000002; 0.25 1.1250000000000002 2.5625000000000004 0.25 1.1250000000000002 3.5625000000000004]
v = [1.9848869350498366, 0.14900935051894693, 0.2052797762484746]
Xf = Trajectory{Vector{Int64}, Vector{Gaussian{Vector{Float64}, Matrix{Float64}}}}([1, 2, 3], Gaussian{Vector{Float64}, Matrix{Float64}}[Gaussian{Vector{Float64}, Matrix{Float64}}([0.9790207655502392, -0.04744344497607657], [0.5215311004784688 0.15311004784688997; 0.15311004784688997 1.6010047846889957]), Gaussian{Vector{Float64}, Matrix{Float64}}([0.22967389559400886, -0.4813823008474627], [0.513741457030682 0.3350391158935584; 0.33503911589355834 1.7745140055256654]), Gaussian{Vector{Float64}, Matrix{Float64}}([-0.028258345825596016, -0.38803249295710757], [0.5536619568052612 0.3866980700032257; 0.38669807000322576 1.7521928916046696])])
(X, ll) = (Trajectory{Vector{Int64}, Vector{Gaussian{Vector{Float64}, Matrix{Float64}}}}([1, 2, 3], Gaussian{Vector{Float64}, Matrix{Float64}}[Gaussian{Vector{Float64}, Matrix{Float64}}([0.9790207655502392, -0.04744344497607657], [0.5215311004784688 0.15311004784688997; 0.15311004784688997 1.6010047846889957]), Gaussian{Vector{Float64}, Matrix{Float64}}([0.22967389559400886, -0.4813823008474627], [0.513741457030682 0.3350391158935584; 0.33503911589355834 1.7745140055256654]), Gaussian{Vector{Float64}, Matrix{Float64}}([-0.028258345825596016, -0.38803249295710757], [0.5536619568052612 0.3866980700032257; 0.38669807000322576 1.7521928916046696])]), -4.176618954097373)
Test Summary: |
Online | No tests
Testing Kalman tests passed