-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.5.0-DEV-ff4f86714b.log
2456 lines (1941 loc) · 55.6 KB
/
1.5.0-DEV-ff4f86714b.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Julia Version 1.5.0-DEV.429
Commit ff4f86714b (2020-03-10 12:13 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-9.0.1 (ORCJIT, skylake)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
JULIA_NUM_THREADS = 2
Resolving package versions...
Installed Requires ───────────────────── v1.0.1
Installed CompilerSupportLibraries_jll ─ v0.2.0+1
Installed ProgressMeter ──────────────── v1.2.0
Installed Rmath_jll ──────────────────── v0.2.2+0
Installed ArrayLayouts ───────────────── v0.1.5
Installed ArgCheck ───────────────────── v2.0.0
Installed AdvancedHMC ────────────────── v0.2.21
Installed LazyArrays ─────────────────── v0.15.0
Installed InplaceOps ─────────────────── v0.3.0
Installed OpenSpecFun_jll ────────────── v0.5.3+3
Installed Missings ───────────────────── v0.4.3
Installed Rmath ──────────────────────── v0.6.1
Installed OrderedCollections ─────────── v1.1.0
Installed Parameters ─────────────────── v0.12.0
Installed MacroTools ─────────────────── v0.5.4
Installed StaticArrays ───────────────── v0.12.1
Installed DataAPI ────────────────────── v1.1.0
Installed SortingAlgorithms ──────────── v0.3.1
Installed StatsFuns ──────────────────── v0.9.4
Installed FillArrays ─────────────────── v0.8.5
Installed SpecialFunctions ───────────── v0.10.0
Installed DataStructures ─────────────── v0.17.10
Installed StatsBase ──────────────────── v0.32.2
#=#=# ## 4.0%######## 11.4%############### 21.7%######################### 35.2%######################################## 56.7%########################################################## 81.1%######################################################################## 100.0%
#=#=# ######################################################################## 100.0%
#=#=# ######################################################################## 100.0%
Updating `~/.julia/environments/v1.5/Project.toml`
0bf59076 + AdvancedHMC v0.2.21
Updating `~/.julia/environments/v1.5/Manifest.toml`
0bf59076 + AdvancedHMC v0.2.21
dce04be8 + ArgCheck v2.0.0
4c555306 + ArrayLayouts v0.1.5
e66e0078 + CompilerSupportLibraries_jll v0.2.0+1
9a962f9c + DataAPI v1.1.0
864edb3b + DataStructures v0.17.10
1a297f60 + FillArrays v0.8.5
505f98c9 + InplaceOps v0.3.0
5078a376 + LazyArrays v0.15.0
1914dd2f + MacroTools v0.5.4
e1d29d7a + Missings v0.4.3
efe28fd5 + OpenSpecFun_jll v0.5.3+3
bac558e1 + OrderedCollections v1.1.0
d96e819e + Parameters v0.12.0
92933f4c + ProgressMeter v1.2.0
ae029012 + Requires v1.0.1
79098fc4 + Rmath v0.6.1
f50d1b31 + Rmath_jll v0.2.2+0
a2af1166 + SortingAlgorithms v0.3.1
276daf66 + SpecialFunctions v0.10.0
90137ffa + StaticArrays v0.12.1
2913bbd2 + StatsBase v0.32.2
4c63d2b9 + StatsFuns v0.9.4
2a0f44e3 + Base64
ade2ca70 + Dates
8ba89e20 + Distributed
b77e0a4c + InteractiveUtils
76f85450 + LibGit2
8f399da3 + Libdl
37e2e46d + LinearAlgebra
56ddb016 + Logging
d6f4376e + Markdown
44cfe95a + Pkg
de0858da + Printf
3fa0cd96 + REPL
9a3f8284 + Random
ea8e919c + SHA
9e88b42a + Serialization
6462fe0b + Sockets
2f01184e + SparseArrays
10745b16 + Statistics
8dfed614 + Test
cf7118a7 + UUIDs
4ec0a83e + Unicode
Testing AdvancedHMC
#=#=# ######################################################################## 100.0%
#=#=# ######################################################################## 100.0%
0.7%############################################ 61.9%######################################################################## 100.0%
#=#=# # 1.7%#### 6.4%######### 12.9%############## 20.8%###################### 31.7%################################# 47.0%############################################# 63.7%############################################################## 87.2%######################################################################## 100.0%
Status `/tmp/jl_tGaydx/Project.toml`
0bf59076 AdvancedHMC v0.2.21
dce04be8 ArgCheck v2.0.0
76274a88 Bijectors v0.5.2
31c24e10 Distributions v0.22.5
f6369f11 ForwardDiff v0.10.9
505f98c9 InplaceOps v0.3.0
5078a376 LazyArrays v0.15.0
1dea7af3 OrdinaryDiffEq v5.29.0
d96e819e Parameters v0.12.0
92933f4c ProgressMeter v1.2.0
ae029012 Requires v1.0.1
2913bbd2 StatsBase v0.32.2
4c63d2b9 StatsFuns v0.9.4
fce5fe82 Turing v0.9.0
b8865327 UnicodePlots v1.2.0
e88e6eb3 Zygote v0.4.9
8ba89e20 Distributed
37e2e46d LinearAlgebra
9a3f8284 Random
10745b16 Statistics
8dfed614 Test
Status `/tmp/jl_tGaydx/Manifest.toml`
621f4979 AbstractFFTs v0.5.0
80f14c24 AbstractMCMC v0.4.0
79e6a3ab Adapt v1.0.1
0bf59076 AdvancedHMC v0.2.21
5b7e9947 AdvancedMH v0.4.1
dce04be8 ArgCheck v2.0.0
ec485272 ArnoldiMethod v0.0.4
7d9fca2a Arpack v0.4.0
68821587 Arpack_jll v3.5.0+2
4fba245c ArrayInterface v2.5.1
4c555306 ArrayLayouts v0.1.5
39de3d68 AxisArrays v0.4.2
6e4b80f9 BenchmarkTools v0.5.0
76274a88 Bijectors v0.5.2
b99e7846 BinaryProvider v0.5.8
d360d2e6 ChainRulesCore v0.7.1
861a8166 Combinatorics v0.7.0
bbf7d656 CommonSubexpressions v0.2.0
34da2185 Compat v3.8.0
e66e0078 CompilerSupportLibraries_jll v0.2.0+1
a8cc5b0e Crayons v4.0.1
9a962f9c DataAPI v1.1.0
864edb3b DataStructures v0.17.10
2b5f629d DiffEqBase v6.19.0
163ba53b DiffResults v1.0.2
b552c78f DiffRules v1.0.1
31c24e10 Distributions v0.22.5
ced4e74d DistributionsAD v0.4.2
ffbed154 DocStringExtensions v0.8.1
366bfd00 DynamicPPL v0.4.2
da5c29d0 EllipsisNotation v0.4.0
d4d017d3 ExponentialUtilities v1.6.0
7a1cc6ca FFTW v1.2.0
f5851436 FFTW_jll v3.3.9+4
1a297f60 FillArrays v0.8.5
6a86dc24 FiniteDiff v2.2.1
59287772 Formatting v0.4.1
f6369f11 ForwardDiff v0.10.9
069b7b12 FunctionWrappers v1.1.1
01680d73 GenericSVD v0.2.2
7869d1d1 IRTools v0.3.1
d25df0c9 Inflate v0.1.1
505f98c9 InplaceOps v0.3.0
1d5cc7b8 IntelOpenMP_jll v2018.0.3+0
8197267c IntervalSets v0.4.0
c8e1da08 IterTools v1.3.0
42fd0dbc IterativeSolvers v0.8.1
82899510 IteratorInterfaceExtensions v1.0.0
682c06a0 JSON v0.21.0
5078a376 LazyArrays v0.15.0
6f1fad26 Libtask v0.3.2
093fc24a LightGraphs v1.3.1
6fdf6af0 LogDensityProblems v0.10.3
c7f686f2 MCMCChains v3.0.4
856f044c MKL_jll v2019.0.117+2
1914dd2f MacroTools v0.5.4
dbb5928d MappedArrays v0.2.2
e1d29d7a Missings v0.4.3
46d2c3a1 MuladdMacro v0.2.2
872c559c NNlib v0.6.6
77ba4419 NaNMath v0.3.3
4536629a OpenBLAS_jll v0.3.7+7
efe28fd5 OpenSpecFun_jll v0.5.3+3
bac558e1 OrderedCollections v1.1.0
1dea7af3 OrdinaryDiffEq v5.29.0
90014a1f PDMats v0.9.11
d96e819e Parameters v0.12.0
69de0a69 Parsers v0.3.12
f27b6e38 Polynomials v0.6.1
92933f4c ProgressMeter v1.2.0
1fd47b50 QuadGK v2.3.1
b3c3ace0 RangeArrays v0.3.2
3cdcf5f2 RecipesBase v0.8.0
731186ca RecursiveArrayTools v2.1.0
f2c3362d RecursiveFactorization v0.1.0
189a3867 Reexport v0.2.0
ae029012 Requires v1.0.1
79098fc4 Rmath v0.6.1
f50d1b31 Rmath_jll v0.2.2+0
f2b01f46 Roots v0.8.4
699a6c99 SimpleTraits v0.9.1
a2af1166 SortingAlgorithms v0.3.1
47a9eef4 SparseDiffTools v1.4.0
276daf66 SpecialFunctions v0.10.0
90137ffa StaticArrays v0.12.1
2913bbd2 StatsBase v0.32.2
4c63d2b9 StatsFuns v0.9.4
3783bdb8 TableTraits v1.0.0
9f7883ad Tracker v0.2.6
84d833dd TransformVariables v0.3.8
a2a6695c TreeViews v0.3.0
fce5fe82 Turing v0.9.0
b8865327 UnicodePlots v1.2.0
19fa3120 VertexSafeGraphs v0.1.1
e88e6eb3 Zygote v0.4.9
700de1a5 ZygoteRules v0.2.0
2a0f44e3 Base64
ade2ca70 Dates
8bb1440f DelimitedFiles
8ba89e20 Distributed
b77e0a4c InteractiveUtils
76f85450 LibGit2
8f399da3 Libdl
37e2e46d LinearAlgebra
56ddb016 Logging
d6f4376e Markdown
a63ad114 Mmap
44cfe95a Pkg
de0858da Printf
3fa0cd96 REPL
9a3f8284 Random
ea8e919c SHA
9e88b42a Serialization
1a1011a3 SharedArrays
6462fe0b Sockets
2f01184e SparseArrays
10745b16 Statistics
4607b0f0 SuiteSparse
8dfed614 Test
cf7118a7 UUIDs
4ec0a83e Unicode
┌ Warning: The current proposal will be rejected due to numerical error(s).
│ isfinite.((θ, r, ℓπ, ℓκ)) = (false, false, true, true)
└ @ AdvancedHMC ~/.julia/packages/AdvancedHMC/haUrH/src/hamiltonian.jl:44
┌ Warning: The current proposal will be rejected due to numerical error(s).
│ isfinite.((θ, r, ℓπ, ℓκ)) = (false, false, true, true)
└ @ AdvancedHMC ~/.julia/packages/AdvancedHMC/haUrH/src/hamiltonian.jl:44
┌ Info: Performance of step() v.s. step()
│ n_steps = 10
│ t_step = 0.153685187
│ t_steps = 0.007366715
└ t_step / t_steps = 20.86210570111644
Sampling 0%| | ETA: 5:22:21[K
iterations: 1
n_steps: 1
is_accept: true
acceptance_rate: 0.00956322771602373
log_density: -10.87267302111075
hamiltonian_energy: 14.709873742185646
hamiltonian_energy_error: 0.0
max_hamiltonian_energy_error: 4.649829981702929
tree_depth: 1
numerical_error: false
step_size: 1.6
nom_step_size: 1.6
is_adapt: true
mass_matrix: DiagEuclideanMetric([1.0, 1.0, 1.0, 1.0, 1.0, 1 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 5%|█▋ | ETA: 0:00:43[K
iterations: 645
n_steps: 23
is_accept: true
acceptance_rate: 0.7174724428235366
log_density: -12.923697097771855
hamiltonian_energy: 17.8946300370809
hamiltonian_energy_error: 0.12467543744129728
max_hamiltonian_energy_error: 0.8536784245858904
tree_depth: 4
numerical_error: false
step_size: 0.8879398390748297
nom_step_size: 0.8879398390748297
is_adapt: true
mass_matrix: DiagEuclideanMetric([0.8908546482631282, 0.7507 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 7%|██▏ | ETA: 0:00:34[K
iterations: 841
n_steps: 3
is_accept: true
acceptance_rate: 0.5886268699412086
log_density: -15.410040225844446
hamiltonian_energy: 20.285020422447072
hamiltonian_energy_error: 0.23486271970532258
max_hamiltonian_energy_error: 1.1681924138004156
tree_depth: 2
numerical_error: false
step_size: 1.367064165216632
nom_step_size: 1.367064165216632
is_adapt: true
mass_matrix: DiagEuclideanMetric([0.8908546482631282, 0.7507 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 9%|██▊ | ETA: 0:00:27[K
iterations: 1081
n_steps: 55
is_accept: true
acceptance_rate: 0.9635028960807585
log_density: -13.942989994009102
hamiltonian_energy: 18.866301879832765
hamiltonian_energy_error: -0.1625696816303197
max_hamiltonian_energy_error: -0.5910237859746026
tree_depth: 5
numerical_error: false
step_size: 0.7965115370384568
nom_step_size: 0.7965115370384568
is_adapt: true
mass_matrix: DiagEuclideanMetric([0.9935713273028892, 0.9659 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 10%|███▎ | ETA: 0:00:24[K
iterations: 1259
n_steps: 7
is_accept: true
acceptance_rate: 0.8846600614930623
log_density: -17.65228108577277
hamiltonian_energy: 22.674999415974643
hamiltonian_energy_error: 0.23028582295209787
max_hamiltonian_energy_error: 0.3638401921567116
tree_depth: 3
numerical_error: false
step_size: 0.7767738545928629
nom_step_size: 0.7767738545928629
is_adapt: true
mass_matrix: DiagEuclideanMetric([0.9935713273028892, 0.9659 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 13%|████ | ETA: 0:00:20[K
iterations: 1531
n_steps: 31
is_accept: true
acceptance_rate: 0.7181505906020691
log_density: -16.691284737384862
hamiltonian_energy: 23.14509993826617
hamiltonian_energy_error: 0.33882777310192935
max_hamiltonian_energy_error: 0.9782785461110493
tree_depth: 4
numerical_error: false
step_size: 0.8665909911058682
nom_step_size: 0.8665909911058682
is_adapt: true
mass_matrix: DiagEuclideanMetric([0.9935713273028892, 0.9659 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 14%|████▌ | ETA: 0:00:18[K
iterations: 1727
n_steps: 87
is_accept: true
acceptance_rate: 0.8889633072183998
log_density: -16.0685039546125
hamiltonian_energy: 23.791005028754594
hamiltonian_energy_error: -0.10387818338967847
max_hamiltonian_energy_error: 0.518752223385853
tree_depth: 6
numerical_error: false
step_size: 0.8134196027490416
nom_step_size: 0.8134196027490416
is_adapt: true
mass_matrix: DiagEuclideanMetric([0.9935713273028892, 0.9659 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 17%|█████▏ | ETA: 0:00:15[K
iterations: 1989
n_steps: 7
is_accept: true
acceptance_rate: 0.9217432965582365
log_density: -15.190253549788945
hamiltonian_energy: 19.976557703339573
hamiltonian_energy_error: 0.08846352768038557
max_hamiltonian_energy_error: 0.1996854504562684
tree_depth: 3
numerical_error: false
step_size: 0.41458929352404517
nom_step_size: 0.41458929352404517
is_adapt: true
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 19%|█████▉ | ETA: 0:00:13[K
iterations: 2286
n_steps: 7
is_accept: true
acceptance_rate: 1.0
log_density: -13.9945560809821
hamiltonian_energy: 19.92765552596029
hamiltonian_energy_error: -0.3185238642675614
max_hamiltonian_energy_error: -0.34414037917645857
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 22%|███████ | ETA: 0:00:11[K
iterations: 2696
n_steps: 7
is_accept: true
acceptance_rate: 0.9970669197676398
log_density: -11.827848302390898
hamiltonian_energy: 13.114888919611403
hamiltonian_energy_error: -0.055823608579883555
max_hamiltonian_energy_error: -0.27122099693689883
tree_depth: 2
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 25%|███████▋ | ETA: 0:00:10[K
iterations: 2971
n_steps: 7
is_accept: true
acceptance_rate: 0.9280663730147075
log_density: -10.995494390730796
hamiltonian_energy: 16.864823983628547
hamiltonian_energy_error: -0.4010751163432609
max_hamiltonian_energy_error: -0.40965919291898345
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 28%|████████▋ | ETA: 0:00:09[K
iterations: 3336
n_steps: 7
is_accept: true
acceptance_rate: 0.8320173361096475
log_density: -11.025975132876361
hamiltonian_energy: 14.323785544893223
hamiltonian_energy_error: 0.021695991384527602
max_hamiltonian_energy_error: 0.3301717912398452
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 30%|█████████▎ | ETA: 0:00:08[K
iterations: 3603
n_steps: 7
is_accept: true
acceptance_rate: 0.7838913036997165
log_density: -16.011606550794582
hamiltonian_energy: 22.64308738126006
hamiltonian_energy_error: 0.12317610917697408
max_hamiltonian_energy_error: 0.5407290515538747
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 34%|██████████▍ | ETA: 0:00:07[K
iterations: 4020
n_steps: 7
is_accept: true
acceptance_rate: 0.9855112320075997
log_density: -12.720725918761785
hamiltonian_energy: 18.34019982240789
hamiltonian_energy_error: -0.36764516466237396
max_hamiltonian_energy_error: -0.36764516466237396
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 36%|███████████▏ | ETA: 0:00:07[K
iterations: 4329
n_steps: 7
is_accept: true
acceptance_rate: 0.7901486386112059
log_density: -15.23782629446131
hamiltonian_energy: 17.70771732522293
hamiltonian_energy_error: 0.4272470028283486
max_hamiltonian_energy_error: 0.455139625453846
tree_depth: 2
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 39%|████████████▎ | ETA: 0:00:06[K
iterations: 4738
n_steps: 7
is_accept: true
acceptance_rate: 0.92385117010089
log_density: -11.51104033186025
hamiltonian_energy: 16.32616982495707
hamiltonian_energy_error: -0.17637272826501516
max_hamiltonian_energy_error: 0.24607149881975232
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 42%|█████████████ | ETA: 0:00:06[K
iterations: 5055
n_steps: 7
is_accept: true
acceptance_rate: 0.6172565625163255
log_density: -11.082472726642543
hamiltonian_energy: 18.73162067567908
hamiltonian_energy_error: 0.027256020086269928
max_hamiltonian_energy_error: 0.9720411836427196
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 45%|██████████████ | ETA: 0:00:05[K
iterations: 5432
n_steps: 7
is_accept: true
acceptance_rate: 0.8905232165112926
log_density: -12.279887984332058
hamiltonian_energy: 17.25683161935845
hamiltonian_energy_error: -0.07929466548455366
max_hamiltonian_energy_error: 0.2751787990698915
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 48%|██████████████▉ | ETA: 0:00:05[K
iterations: 5779
n_steps: 7
is_accept: true
acceptance_rate: 0.9959349648035738
log_density: -12.23780780451547
hamiltonian_energy: 17.31677283329139
hamiltonian_energy_error: -0.3771864134969185
max_hamiltonian_energy_error: -0.4488718728785379
tree_depth: 2
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 51%|███████████████▉ | ETA: 0:00:04[K
iterations: 6146
n_steps: 7
is_accept: true
acceptance_rate: 0.9812489962688488
log_density: -14.386131867557184
hamiltonian_energy: 23.34380199155858
hamiltonian_energy_error: -0.6237266755222777
max_hamiltonian_energy_error: -0.6269352925331937
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 54%|████████████████▊ | ETA: 0:00:04[K
iterations: 6502
n_steps: 3
is_accept: true
acceptance_rate: 0.7913723452836585
log_density: -11.1591116998339
hamiltonian_energy: 16.246494009564532
hamiltonian_energy_error: -0.0964892625981193
max_hamiltonian_energy_error: 0.3912026999676961
tree_depth: 2
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 57%|█████████████████▊ | ETA: 0:00:03[K
iterations: 6892
n_steps: 7
is_accept: true
acceptance_rate: 0.9237102516685068
log_density: -13.064380381745254
hamiltonian_energy: 17.213915112563317
hamiltonian_energy_error: 0.01797568129961391
max_hamiltonian_energy_error: 0.14798968826132608
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 60%|██████████████████▋ | ETA: 0:00:03[K
iterations: 7232
n_steps: 7
is_accept: true
acceptance_rate: 0.8755891092391168
log_density: -12.265352928951591
hamiltonian_energy: 15.582833147834718
hamiltonian_energy_error: 0.058652511355671066
max_hamiltonian_energy_error: 0.28114488869523413
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 63%|███████████████████▋ | ETA: 0:00:03[K
iterations: 7616
n_steps: 7
is_accept: true
acceptance_rate: 0.9203051707955215
log_density: -11.229589330505398
hamiltonian_energy: 14.499659951987653
hamiltonian_energy_error: -0.04624808409842984
max_hamiltonian_energy_error: 0.15908867212460365
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 66%|████████████████████▌ | ETA: 0:00:02[K
iterations: 7959
n_steps: 7
is_accept: true
acceptance_rate: 0.9149894822989685
log_density: -11.584045425696589
hamiltonian_energy: 12.793632131257356
hamiltonian_energy_error: 0.13673796398510696
max_hamiltonian_energy_error: 0.17433733390240747
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 70%|█████████████████████▋ | ETA: 0:00:02[K
iterations: 8351
n_steps: 7
is_accept: true
acceptance_rate: 0.9419165571239965
log_density: -17.61503081751272
hamiltonian_energy: 21.72367287742597
hamiltonian_energy_error: 0.2158695644240396
max_hamiltonian_energy_error: -0.31778403075276884
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A
[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[A[K[ASampling 72%|██████████████████████▌ | ETA: 0:00:02[K
iterations: 8688
n_steps: 7
is_accept: true
acceptance_rate: 0.9486789249024626
log_density: -16.19688197873311
hamiltonian_energy: 20.04804532525358
hamiltonian_energy_error: 0.19926684216638435
max_hamiltonian_energy_error: 0.19926684216638435
tree_depth: 3
numerical_error: false
step_size: 0.7288541494307283
nom_step_size: 0.7288541494307283
is_adapt: false
mass_matrix: DiagEuclideanMetric([0.956301571498293, 1.05399 ...])[A[A[A[A[A[A[A[A[A[A[A[A[A[A