Commits: JuliaLang/julia@1acc6343084e9fb8355fbd5f10b1056cb0c2b67e vs JuliaLang/julia@68d62ab3d3ca91ea882aa749c5825ca5fee48948
Comparison Diff: link
Triggered By: link
Tag Predicate: "inference"
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["inference", "abstract interpretation", "abstract_call_gf_by_type"] |
0.94 (5%) ✅ | 1.00 (1%) |
["inference", "abstract interpretation", "broadcast"] |
0.93 (5%) ✅ | 1.00 (1%) |
["inference", "abstract interpretation", "construct_ssa!"] |
0.93 (5%) ✅ | 1.00 (1%) |
["inference", "abstract interpretation", "domsort_ssa!"] |
0.92 (5%) ✅ | 1.00 (1%) |
["inference", "abstract interpretation", "rand(Float64)"] |
0.98 (5%) | 1.06 (1%) ❌ |
["inference", "abstract interpretation", "sin(42)"] |
0.92 (5%) ✅ | 1.00 (1%) |
["inference", "allinference", "rand(Float64)"] |
1.01 (5%) | 1.05 (1%) ❌ |
["inference", "optimization", "println(::QuoteNode)"] |
0.93 (5%) ✅ | 1.00 (1%) |
Here's a list of all the benchmark groups executed by this job:
["inference", "abstract interpretation"]
["inference", "allinference"]
["inference", "optimization"]
Julia Version 1.9.0-DEV.842
Commit 1acc634308 (2022-06-23 09:08 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.4 LTS
uname: Linux 5.4.0-113-generic #127-Ubuntu SMP Wed May 18 14:30:56 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3000 MHz 61519 s 157 s 16804 s 25631664 s 0 s
#2 2993 MHz 2046238 s 55 s 99568 s 23570684 s 0 s
#3 2948 MHz 53707 s 47 s 11756 s 25639039 s 0 s
#4 3122 MHz 40158 s 91 s 11320 s 25644990 s 0 s
#5 2679 MHz 50101 s 38 s 11629 s 25564274 s 0 s
#6 3031 MHz 41596 s 20 s 11399 s 25652895 s 0 s
#7 2967 MHz 44720 s 32 s 11836 s 25658774 s 0 s
#8 2501 MHz 49411 s 65 s 11525 s 25648609 s 0 s
Memory: 31.32082748413086 GB (15158.00390625 MB free)
Uptime: 2.57363842e6 sec
Load Avg: 1.0 1.04 1.2
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.5 (ORCJIT, haswell)
Threads: 1 on 8 virtual cores
Julia Version 1.9.0-DEV.840
Commit 68d62ab3d3 (2022-06-22 21:39 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.4 LTS
uname: Linux 5.4.0-113-generic #127-Ubuntu SMP Wed May 18 14:30:56 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 2880 MHz 61552 s 157 s 16832 s 25643218 s 0 s
#2 3021 MHz 2056042 s 55 s 99723 s 23572359 s 0 s
#3 3181 MHz 54235 s 47 s 11778 s 25650119 s 0 s
#4 2999 MHz 40202 s 91 s 11332 s 25656557 s 0 s
#5 3038 MHz 50277 s 38 s 11644 s 25575703 s 0 s
#6 3035 MHz 41723 s 20 s 11409 s 25664388 s 0 s
#7 2550 MHz 44834 s 32 s 11848 s 25670281 s 0 s
#8 2994 MHz 50278 s 65 s 11554 s 25659345 s 0 s
Memory: 31.32082748413086 GB (15181.6484375 MB free)
Uptime: 2.57480187e6 sec
Load Avg: 1.0 1.01 1.06
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.5 (ORCJIT, haswell)
Threads: 1 on 8 virtual cores