-
Notifications
You must be signed in to change notification settings - Fork 89
/
array.jl
456 lines (388 loc) · 18.2 KB
/
array.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
@testset "Array constructors" begin
@testset "undef" begin
# We can't use test_rrule here (as it's currently implemented) because the elements of
# the array have arbitrary values. The only thing we can do is ensure that we're getting
# `ZeroTangent`s back, and that the forwards pass produces the correct thing still.
# Issue: https://github.com/JuliaDiff/ChainRulesTestUtils.jl/issues/202
val, pullback = rrule(Array{Float64}, undef, 5)
@test size(val) == (5, )
@test val isa Array{Float64, 1}
@test pullback(randn(5)) == (NoTangent(), NoTangent(), NoTangent())
end
@testset "from existing array" begin
# fwd
test_frule(Array, randn(2, 5))
test_frule(Array, Diagonal(randn(5)))
# rev
test_rrule(Array, randn(2, 5))
test_rrule(Array, Diagonal(randn(5)))
test_rrule(Matrix, Diagonal(randn(5)))
test_rrule(Matrix, transpose(randn(4)))
test_rrule(Array{ComplexF64}, randn(3))
end
end
@testset "AbstractArray constructors" begin
# These are what float(x) calls, but it's trivial with floating point numbers:
test_frule(AbstractArray{Float32}, rand(3); atol=0.01)
test_frule(AbstractArray{Float32}, Diagonal(rand(4)); atol=0.01)
# rev
test_rrule(AbstractArray{Float32}, rand(3); atol=0.01)
test_rrule(AbstractArray{Float32}, Diagonal(rand(4)); atol=0.01)
# Check with integers:
rrule(AbstractArray{Float64}, [1, 2, 3])[2]([1, 10, 100]) == (NoTangent(), [1.0, 10.0, 100.0])
end
@testset "vect" begin
test_rrule(Base.vect)
@testset "homogeneous type" begin
test_rrule(Base.vect, (5.0,), (4.0,))
test_frule(Base.vect, (5.0,), (4.0,))
test_rrule(Base.vect, 5.0, 4.0, 3.0)
test_frule(Base.vect, 5.0, 4.0, 3.0)
test_rrule(Base.vect, randn(2, 2), randn(3, 3))
test_frule(Base.vect, randn(2, 2), randn(3, 3))
# Nonnumber types
test_frule(Base.vect, (1.0, 2.0), (1.0, 2.0))
test_rrule(Base.vect, (1.0, 2.0), (1.0, 2.0))
end
@testset "inhomogeneous type" begin
# fwd
test_frule(Base.vect, 5.0, 3f0)
# rev
test_rrule(
Base.vect, 5.0, 3f0;
atol=1e-6, rtol=1e-6,
) # tolerance due to Float32.
test_rrule(Base.vect, 5.0, randn(3, 3); check_inferred=false)
test_rrule(Base.vect, (5.0, 4.0), (y=randn(3),); check_inferred=false)
end
@testset "_instantiate_zeros" begin
# This is an internal function also used for `cat` etc.
_instantiate_zeros = ChainRules._instantiate_zeros
# Check these hit the fast path, unrealistic input so that map would fail:
@test _instantiate_zeros((true, 2 , 3.0), ()) == (1, 2, 3)
@test _instantiate_zeros((1:2, [3, 4]), ()) == (1:2, 3:4)
end
end
@testset "copyto!" begin
test_frule(copyto!, rand(5), rand(5))
test_frule(copyto!, rand(10), 3, rand(5))
test_frule(copyto!, rand(10), 2, rand(5), 2)
test_frule(copyto!, rand(10), 2, rand(5), 2, 4)
end
@testset "reshape" begin
# Forward
@gpu test_frule(reshape, rand(4, 3), 2, :)
test_frule(reshape, rand(4, 3), axes(rand(6, 2)))
@test_skip test_frule(reshape, Diagonal(rand(4)), 2, :) # https://github.com/JuliaDiff/ChainRulesTestUtils.jl/issues/239
# Reverse
@gpu test_rrule(reshape, rand(4, 5), (2, 10))
test_rrule(reshape, rand(4, 5), 2, 10)
test_rrule(reshape, rand(4, 5), 2, :)
test_rrule(reshape, rand(4, 5), axes(rand(10, 2)))
# structured
test_rrule(reshape, transpose(rand(4)), :)
test_rrule(reshape, adjoint(rand(ComplexF64, 4)), :)
@test rrule(reshape, adjoint(rand(ComplexF64, 4)), :)[2](rand(4))[2] isa Adjoint{ComplexF64}
@test rrule(reshape, Diagonal(rand(4)), (2, :))[2](ones(2,8))[2] isa Diagonal
@test_skip test_rrule(reshape, Diagonal(rand(4)), 2, :) # DimensionMismatch("second dimension of A, 22, does not match length of x, 16")
@test_skip test_rrule(reshape, UpperTriangular(rand(4,4)), (8, 2)) # https://github.com/JuliaDiff/ChainRulesTestUtils.jl/issues/239
end
@testset "dropdims" begin
# fwd
test_frule(dropdims, rand(4, 1); fkwargs=(; dims=2))
# rev
test_rrule(dropdims, rand(4, 1); fkwargs=(; dims=2))
test_rrule(dropdims, transpose(rand(4)); fkwargs=(; dims=1))
test_rrule(dropdims, adjoint(rand(ComplexF64, 4)); fkwargs=(; dims=1))
@test rrule(dropdims, adjoint(rand(ComplexF64, 4)); dims=1)[2](rand(4))[2] isa Adjoint{ComplexF64}
end
@testset "permutedims + PermutedDimsArray" begin
# Forward
@gpu test_frule(permutedims, rand(5))
@gpu test_frule(permutedims, rand(3, 4), (2, 1))
test_frule(permutedims!, rand(4,3), rand(3, 4), (2, 1))
test_frule(PermutedDimsArray, rand(3, 4, 5), (3, 1, 2))
# Reverse
@gpu test_rrule(permutedims, rand(5))
@gpu test_rrule(permutedims, rand(3, 4), (2, 1))
test_rrule(permutedims, Diagonal(rand(5)), (2, 1))
# Note BTW that permutedims(Diagonal(rand(5))) does not use the rule at all
@test invperm((3, 1, 2)) != (3, 1, 2)
test_rrule(permutedims, rand(3, 4, 5), (3, 1, 2))
@test_skip test_rrule(PermutedDimsArray, rand(3, 4, 5), (3, 1, 2)) # https://github.com/JuliaDiff/ChainRulesTestUtils.jl/issues/240
x = rand(2, 3, 4)
dy = rand(4, 2, 3)
@test rrule(permutedims, x, (3, 1, 2))[2](dy)[2] == rrule(PermutedDimsArray, x, (3, 1, 2))[2](dy)[2]
end
@testset "repeat" begin
# forward
test_frule(repeat, rand(4), 2)
test_frule(repeat, rand(2, 3); fkwargs = (inner=(1,2), outer=(1,3)))
# reverse
test_rrule(repeat, rand(4, ))
test_rrule(repeat, rand(4, 5))
test_rrule(repeat, rand(4, 5); fkwargs = (outer=(1,2),))
@gpu_broken test_rrule(repeat, rand(4, 5); fkwargs = (inner=(1,2), outer=(1,3)))
@gpu_broken test_rrule(repeat, rand(4, 5); fkwargs = (outer=2,))
@gpu test_rrule(repeat, rand(4, ), 2)
@gpu test_rrule(repeat, rand(4, 5), 2)
@gpu test_rrule(repeat, rand(4, 5), 2, 3)
test_rrule(repeat, rand(1,2,3), 2,3,4; check_inferred=VERSION>v"1.6")
test_rrule(repeat, rand(0,2,3), 2,0,4; check_inferred=VERSION>v"1.6")
test_rrule(repeat, rand(1,1,1,1), 2,3,4,5; check_inferred=VERSION>v"1.6")
# These need Julia 1.6
test_rrule(repeat, rand(4, 5); fkwargs = (inner=(2,4), outer=(1,1,1,3)))
test_rrule(repeat, rand(1,2,3), 2,3)
test_rrule(repeat, rand(1,2,3), 2,3,4,2)
test_rrule(repeat, fill(1.0), 2)
test_rrule(repeat, fill(1.0), 2, 3)
# These fail for other v1.0 related issues (add!!)
# v"1.0": fill(1.0) + fill(1.0) != fill(2.0)
# v"1.6: fill(1.0) + fill(1.0) == fill(2.0) # Expected
test_rrule(repeat, fill(1.0); fkwargs = (inner=2,))
test_rrule(repeat, fill(1.0); fkwargs = (inner=2, outer=3,))
@test rrule(repeat, [1,2,3], 4)[2](ones(12))[2] == [4,4,4]
@test rrule(repeat, [1,2,3], outer=4)[2](ones(12))[2] == [4,4,4]
test_rrule(repeat, [true, false], 3)
end
@testset "hcat" begin
# forward
@gpu test_frule(hcat, randn(3, 2), randn(3))
@gpu test_frule(hcat, randn(), randn(1,3))
# reverse
@gpu test_rrule(hcat, randn(3, 2), randn(3), randn(3, 3))
@gpu test_rrule(hcat, rand(1,2), rand(), rand(1,3))
test_rrule(hcat, rand(), rand(1,2), rand(1,2,1))
test_rrule(hcat, rand(3,1,1,2), rand(3,3,1,2))
# mix types
test_rrule(hcat, rand(1, 3), rand(2)')
test_rrule(hcat, rand(1), (nothing, rand()), check_inferred=false)
end
@testset "reduce hcat" begin
mats = [randn(3, 2), randn(3, 1), randn(3, 3)]
test_frule(reduce, hcat, mats)
test_rrule(reduce, hcat, mats)
vecs = [rand(3) for _ in 1:4]
test_frule(reduce, hcat, vecs)
test_rrule(reduce, hcat, vecs)
mix = AbstractVecOrMat[rand(4,2), rand(4)] # this is weird, but does hit the fast path
test_rrule(reduce, hcat, mix)
adjs = vec([randn(2, 4), randn(1, 4), randn(3, 4)]') # not a Vector
# test_rrule(reduce, hcat, adjs ⊢ map(m -> rand(size(m)), adjs))
dy = 1 ./ reduce(hcat, adjs)
@test rrule(reduce, hcat, adjs)[2](dy)[3] ≈ rrule(reduce, hcat, collect.(adjs))[2](dy)[3]
# mix types
mats = [randn(2, 2), rand(2, 2)']
test_rrule(reduce, hcat, mats)
end
@testset "vcat" begin
# forward
test_frule(vcat, randn(), randn(3), rand())
@gpu test_frule(vcat, randn(3), rand(), randn(3))
@gpu test_frule(vcat, randn(3, 1), randn(3))
# reverse
@gpu test_rrule(vcat, randn(3), rand(), randn(3))
@gpu test_rrule(vcat, randn(2, 4), randn(1, 4), randn(3, 4))
test_rrule(vcat, rand(), rand())
test_rrule(vcat, rand(), rand(3), rand(3,1,1))
test_rrule(vcat, rand(3,1,2), rand(4,1,2))
# mix types
test_rrule(vcat, rand(2, 2), rand(2, 2)')
test_rrule(vcat, rand(), rand() => rand(); check_inferred=false)
test_rrule(vcat, rand(3), (rand(), nothing), pi/2; check_inferred=false)
end
@testset "reduce vcat" begin
mats = [randn(2, 4), randn(1, 4), randn(3, 4)]
test_frule(reduce, vcat, mats)
test_rrule(reduce, vcat, mats)
vecs = [rand(2), rand(3), rand(4)]
test_frule(reduce, vcat, vecs)
test_rrule(reduce, vcat, vecs)
mix = AbstractVecOrMat[rand(4,1), rand(4)]
test_rrule(reduce, vcat, mix)
end
@testset "cat" begin
# forward
test_frule(cat, rand(2, 4), rand(1, 4); fkwargs=(dims=1,))
test_frule(cat, rand(), rand(2,3); fkwargs=(dims=(1,2),))
# reverse
@gpu test_rrule(cat, rand(2, 4), rand(1, 4); fkwargs=(dims=1,))
@gpu test_rrule(cat, rand(2, 4), rand(2); fkwargs=(dims=Val(2),))
test_rrule(cat, rand(), rand(2, 3); fkwargs=(dims=[1,2],))
test_rrule(cat, rand(1), rand(3, 2, 1); fkwargs=(dims=(1,2),), check_inferred=false) # infers Tuple{Zero, Vector{Float64}, Any}
if VERSION ≥ v"1.8" # Val(tuple) dims support was added in v1.8
test_rrule(cat, randn(3,2,4), randn(3,2,4); fkwargs=(dims=Val((1,2)),)) #678
end
test_rrule(cat, rand(2, 2), rand(2, 2)'; fkwargs=(dims=1,))
# inference on exotic array types
test_rrule(cat, @SArray(rand(3, 2, 1)), @SArray(rand(3, 2, 1)); fkwargs=(dims=Val(2),))
test_rrule(cat, pi/2, rand(1,3), (4.5,); fkwargs=(;dims=(2,)), check_inferred=false)
end
@testset "hvcat" begin
# forward
test_frule(hvcat, 2, rand(6)...)
# reverse
test_rrule(hvcat, 2, rand(ComplexF64, 6)...)
test_rrule(hvcat, (2, 1), rand(), rand(1,1), rand(2,2))
test_rrule(hvcat, 1, rand(3)' ⊢ rand(1,3), transpose(rand(3)) ⊢ rand(1,3))
test_rrule(hvcat, 1, rand(0,3), rand(2,3), rand(1,3,1))
# mix types (adjoint and transpose)
test_rrule(hvcat, 1, rand(3)', transpose(rand(3)) ⊢ rand(1,3))
test_rrule(hvcat, (1,2), rand(2)', (3.4, 5.6), 7.8; check_inferred=false)
end
@testset "reverse" begin
@testset "Tuple" begin
test_frule(reverse, Tuple(rand(10)))
@test_skip test_rrule(reverse, Tuple(rand(10))) # Ambiguity in isapprox, https://github.com/JuliaDiff/ChainRulesTestUtils.jl/issues/229
end
@testset "Array" begin
# Forward
@gpu_broken test_frule(reverse, rand(5))
test_frule(reverse, rand(5), 2, 4)
test_frule(reverse, rand(5), fkwargs=(dims=1,))
test_frule(reverse, rand(3,4), fkwargs=(dims=2,))
test_frule(reverse, rand(3,4))
test_frule(reverse, rand(3,4,5), fkwargs=(dims=(1,3),))
test_frule(reverse!, rand(5))
test_frule(reverse!, rand(5), 2, 4)
test_frule(reverse!, rand(3,4), fkwargs=(dims=2,))
# Reverse
@gpu_broken test_rrule(reverse, rand(5))
test_rrule(reverse, rand(5), 2, 4)
test_rrule(reverse, rand(5), fkwargs=(dims=1,))
test_rrule(reverse, rand(3,4), fkwargs=(dims=2,))
test_rrule(reverse, rand(3,4))
test_rrule(reverse, rand(3,4,5), fkwargs=(dims=(1,3),))
# Structured
y, pb = rrule(reverse, Diagonal([1,2,3]))
# We only preserve structure in this case if given structured tangent (no ProjectTo)
@test unthunk(pb(Diagonal([1.1, 2.1, 3.1]))[2]) isa Diagonal
@test unthunk(pb(rand(3, 3))[2]) isa AbstractArray
end
end
@testset "circshift" begin
# Forward
@gpu test_frule(circshift, rand(10), 1)
test_frule(circshift, rand(10), (1,))
test_frule(circshift, rand(3,4), (-7,2))
test_frule(circshift!, rand(10), rand(10), 1)
test_frule(circshift!, rand(3,4), rand(3,4), (-7,2))
# Reverse
@gpu test_rrule(circshift, rand(10), 1)
test_rrule(circshift, rand(10) .+ im, -2)
test_rrule(circshift, rand(10), (1,))
test_rrule(circshift, rand(3,4), (-7,2))
end
@testset "fill" begin
# Forward
test_frule(fill, 12.3, 4)
test_frule(fill, 5.0, (6, 7))
test_frule(fill!, rand(2, 3), rand())
# Reverse
test_rrule(fill, 44.4, 4)
test_rrule(fill, 55 + 0.5im, 5)
test_rrule(fill, 3.3, (3, 3, 3))
end
@testset "filter" begin
@testset "Array" begin
# Random numbers will confuse finite differencing here, as it may perturb across the boundary.
x5 = [0.0, 1.0, 0.2, 0.9, 0.7]
x34 = Float64[-113 124 -37 12
96 -89 103 119
91 -21 -110 10]
# Forward
test_frule(filter, >(0.5) ⊢ NoTangent(), x5)
test_frule(filter, <(0), x34)
test_frule(filter, >(100), x5)
# Reverse
test_rrule(filter, >(0.5) ⊢ NoTangent(), x5) # Without ⊢, MethodError: zero(::Base.Fix2{typeof(>), Float64}) -- https://github.com/JuliaDiff/ChainRulesTestUtils.jl/issues/231
test_rrule(filter, <(0), x34)
test_rrule(filter, >(100), x5) # fixed in https://github.com/JuliaDiff/ChainRulesCore.jl/pull/534
@test unthunk(rrule(filter, >(100), x5)[2](Int[])[3]) == zero(x5)
end
end
@testset "findmin & findmax" begin
# Forward
test_frule(findmin, rand(10))
test_frule(findmax, rand(10))
@test @inferred(frule((nothing, rand(3,4)), findmin, rand(3,4))) isa Tuple{Tuple{Float64, CartesianIndex}, Tangent}
@test @inferred(frule((nothing, rand(3,4)), findmin, rand(3,4), dims=1)) isa Tuple{Tuple{Matrix, Matrix}, Tangent}
@test_skip test_frule(findmin, rand(3,4)) # error from test_approx(actual::CartesianIndex{2}, expected::CartesianIndex{2}
@test_skip test_frule(findmin, rand(3,4), output_tangent = (rand(), NoTangent()))
@test_skip test_frule(findmin, rand(3,4), fkwargs=(dims=1,))
# These skipped tests might be fixed by https://github.com/JuliaDiff/FiniteDifferences.jl/issues/188
# or by https://github.com/JuliaLang/julia/pull/48404
# Reverse
test_rrule(findmin, rand(10), output_tangent = (rand(), false))
test_rrule(findmax, rand(10), output_tangent = (rand(), false))
test_rrule(findmin, rand(5,3); check_inferred=false)
test_rrule(findmax, rand(5,3); check_inferred=false)
@test [0 0; 0 5] == unthunk(rrule(findmax, [1 2; 3 4])[2]((5.0, nothing))[2])
@test [0 0; 0 5] == unthunk(rrule(findmax, [1 2; 3 4])[2]((5.0, NoTangent()))[2])
# Reverse with dims:
@test [0 0; 5 6] == @inferred unthunk(rrule(findmax, [1 2; 3 4], dims=1)[2](([5 6], nothing))[2])
@test [5 0; 6 0] == @inferred unthunk(rrule(findmin, [1 2; 3 4], dims=2)[2]((hcat([5,6]), nothing))[2])
test_rrule(findmin, rand(3,4), fkwargs=(dims=1,), output_tangent = (rand(1,4), NoTangent()))
test_rrule(findmin, rand(3,4), fkwargs=(dims=2,))
test_rrule(findmin, rand(3,4), fkwargs=(dims=(1,2),))
end
@testset "$imum" for imum in [maximum, minimum]
# Forward
test_frule(imum, rand(10))
test_frule(imum, rand(3,4))
@gpu test_frule(imum, rand(3,4), fkwargs=(dims=1,))
test_frule(imum, [rand(2) for _ in 1:3])
test_frule(imum, [rand(2) for _ in 1:3, _ in 1:4]; fkwargs=(dims=1,))
# Reverse
test_rrule(imum, rand(10))
test_rrule(imum, rand(3,4); check_inferred=false)
@gpu test_rrule(imum, rand(3,4), fkwargs=(dims=1,))
test_rrule(imum, rand(3,4,5), fkwargs=(dims=(1,3),))
# Arrays of arrays
test_rrule(imum, [rand(2) for _ in 1:3]; check_inferred=false)
test_rrule(imum, [rand(2) for _ in 1:3, _ in 1:4]; fkwargs=(dims=1,), check_inferred=false)
# Case which attains max twice -- can't use FiniteDifferences for this
res = imum == maximum ? [0,1,0,0,0,0] : [1,0,0,0,0,0]
@test res == @inferred unthunk(rrule(imum, [1,2,1,2,1,2])[2](1.0)[2])
# Structured matrix -- NB the minimum is a structral zero here
@test unthunk(rrule(imum, Diagonal(rand(3) .+ 1))[2](5.5)[2]) isa Diagonal
@test unthunk(rrule(imum, UpperTriangular(rand(3,3) .+ 1))[2](5.5)[2]) isa UpperTriangular{Float64}
@test_skip test_rrule(imum, Diagonal(rand(3) .+ 1)) # MethodError: no method matching zero(::Type{Any}), from fill!(A::SparseArrays.SparseMatrixCSC{Any, Int64}, x::Bool)
end
@testset "extrema" begin
test_rrule(extrema, rand(10), output_tangent = (rand(), rand()))
test_rrule(extrema, rand(3,4), fkwargs=(dims=1,), output_tangent = collect(zip(rand(1,4), rand(1,4))))
# Case where both extrema are the same index, to check accumulation:
test_rrule(extrema, rand(1), output_tangent = (rand(), rand()))
test_rrule(extrema, rand(1,1), fkwargs=(dims=2,), output_tangent = hcat((rand(), rand())))
test_rrule(extrema, rand(3,1), fkwargs=(dims=2,), output_tangent = collect(zip(rand(3,1), rand(3,1))))
# Double-check the forward pass
A = randn(3,4,5)
@test extrema(A, dims=(1,3)) == rrule(extrema, A, dims=(1,3))[1]
B = hcat(A[:,:,1], A[:,:,1])
@test extrema(B, dims=2) == rrule(extrema, B, dims=2)[1]
end
@testset "stack" begin
# vector container
xs = [rand(3, 4), rand(3, 4)]
test_frule(stack, xs)
test_frule(stack, xs; fkwargs=(dims=1,))
test_rrule(stack, xs, check_inferred=false)
test_rrule(stack, xs, fkwargs=(dims=1,), check_inferred=false)
test_rrule(stack, xs, fkwargs=(dims=2,), check_inferred=false)
test_rrule(stack, xs, fkwargs=(dims=3,), check_inferred=false)
# multidimensional container
ms = [rand(2,3) for _ in 1:4, _ in 1:5];
if VERSION > v"1.9-" # this needs new eachslice, not yet in Compat
test_rrule(stack, ms, check_inferred=false)
end
test_rrule(stack, ms, fkwargs=(dims=1,), check_inferred=false)
test_rrule(stack, ms, fkwargs=(dims=3,), check_inferred=false)
# non-array inner objects
ts = [Tuple(rand(3)) for _ in 1:4, _ in 1:2];
if VERSION > v"1.9-"
test_rrule(stack, ts, check_inferred=false)
end
test_rrule(stack, ts, fkwargs=(dims=1,), check_inferred=false)
test_rrule(stack, ts, fkwargs=(dims=2,), check_inferred=false)
end