diff --git a/src/special.jl b/src/special.jl index 1744a23..885f29f 100644 --- a/src/special.jl +++ b/src/special.jl @@ -330,27 +330,11 @@ end ==(A::Bidiagonal, B::SymTridiagonal) = iszero(_evview(B)) && iszero(A.ev) && A.dv == B.dv ==(B::SymTridiagonal, A::Bidiagonal) = A == B -# concatenation -const _SpecialArrays = Union{Diagonal, Bidiagonal, Tridiagonal, SymTridiagonal} -const _Symmetric_DenseArrays{T,A<:Matrix} = Symmetric{T,A} -const _Hermitian_DenseArrays{T,A<:Matrix} = Hermitian{T,A} -const _Triangular_DenseArrays{T,A<:Matrix} = AbstractTriangular{T,A} -const _Annotated_DenseArrays = Union{_SpecialArrays, _Triangular_DenseArrays, _Symmetric_DenseArrays, _Hermitian_DenseArrays} -const _Annotated_Typed_DenseArrays{T} = Union{_Triangular_DenseArrays{T}, _Symmetric_DenseArrays{T}, _Hermitian_DenseArrays{T}} -const _DenseConcatGroup = Union{Number, Vector, Adjoint{<:Any,<:Vector}, Transpose{<:Any,<:Vector}, Matrix, _Annotated_DenseArrays} -const _TypedDenseConcatGroup{T} = Union{Vector{T}, Adjoint{T,Vector{T}}, Transpose{T,Vector{T}}, Matrix{T}, _Annotated_Typed_DenseArrays{T}} - -promote_to_array_type(::Tuple{Vararg{Union{_DenseConcatGroup,UniformScaling}}}) = Matrix - -Base._cat(dims, xs::_DenseConcatGroup...) = Base._cat_t(dims, promote_eltype(xs...), xs...) -vcat(A::_DenseConcatGroup...) = Base.typed_vcat(promote_eltype(A...), A...) -hcat(A::_DenseConcatGroup...) = Base.typed_hcat(promote_eltype(A...), A...) -hvcat(rows::Tuple{Vararg{Int}}, xs::_DenseConcatGroup...) = Base.typed_hvcat(promote_eltype(xs...), rows, xs...) -# For performance, specially handle the case where the matrices/vectors have homogeneous eltype -Base._cat(dims, xs::_TypedDenseConcatGroup{T}...) where {T} = Base._cat_t(dims, T, xs...) -vcat(A::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_vcat(T, A...) -hcat(A::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_hcat(T, A...) -hvcat(rows::Tuple{Vararg{Int}}, xs::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_hvcat(T, rows, xs...) +# TODO: remove these deprecations (used by SparseArrays in the past) +const _DenseConcatGroup = Union{} +const _SpecialArrays = Union{} + +promote_to_array_type(::Tuple) = Matrix # factorizations function cholesky(S::RealHermSymComplexHerm{<:Real,<:SymTridiagonal}, ::NoPivot = NoPivot(); check::Bool = true) diff --git a/src/uniformscaling.jl b/src/uniformscaling.jl index 21ae8a1..0b31681 100644 --- a/src/uniformscaling.jl +++ b/src/uniformscaling.jl @@ -408,7 +408,7 @@ end # so that we can re-use this code for sparse-matrix hcat etcetera. promote_to_arrays_(n::Int, ::Type, a::Number) = a promote_to_arrays_(n::Int, ::Type{Matrix}, J::UniformScaling{T}) where {T} = Matrix(J, n, n) -promote_to_arrays_(n::Int, ::Type, A::AbstractVecOrMat) = A +promote_to_arrays_(n::Int, ::Type, A::AbstractArray) = A promote_to_arrays(n,k, ::Type) = () promote_to_arrays(n,k, ::Type{T}, A) where {T} = (promote_to_arrays_(n[k], T, A),) promote_to_arrays(n,k, ::Type{T}, A, B) where {T} = @@ -417,17 +417,16 @@ promote_to_arrays(n,k, ::Type{T}, A, B, C) where {T} = (promote_to_arrays_(n[k], T, A), promote_to_arrays_(n[k+1], T, B), promote_to_arrays_(n[k+2], T, C)) promote_to_arrays(n,k, ::Type{T}, A, B, Cs...) where {T} = (promote_to_arrays_(n[k], T, A), promote_to_arrays_(n[k+1], T, B), promote_to_arrays(n,k+2, T, Cs...)...) -promote_to_array_type(A::Tuple{Vararg{Union{AbstractVecOrMat,UniformScaling,Number}}}) = Matrix _us2number(A) = A _us2number(J::UniformScaling) = J.λ for (f, _f, dim, name) in ((:hcat, :_hcat, 1, "rows"), (:vcat, :_vcat, 2, "cols")) @eval begin - @inline $f(A::Union{AbstractVecOrMat,UniformScaling}...) = $_f(A...) + @inline $f(A::Union{AbstractArray,UniformScaling}...) = $_f(A...) # if there's a Number present, J::UniformScaling must be 1x1-dimensional - @inline $f(A::Union{AbstractVecOrMat,UniformScaling,Number}...) = $f(map(_us2number, A)...) - function $_f(A::Union{AbstractVecOrMat,UniformScaling,Number}...; array_type = promote_to_array_type(A)) + @inline $f(A::Union{AbstractArray,UniformScaling,Number}...) = $f(map(_us2number, A)...) + function $_f(A::Union{AbstractArray,UniformScaling,Number}...; array_type = promote_to_array_type(A)) n = -1 for a in A if !isa(a, UniformScaling) @@ -445,9 +444,8 @@ for (f, _f, dim, name) in ((:hcat, :_hcat, 1, "rows"), (:vcat, :_vcat, 2, "cols" end end -hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScaling}...) = _hvcat(rows, A...) -hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScaling,Number}...) = _hvcat(rows, A...) -function _hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScaling,Number}...; array_type = promote_to_array_type(A)) +hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractArray,UniformScaling,Number}...) = _hvcat(rows, A...) +function _hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractArray,UniformScaling,Number}...; array_type = promote_to_array_type(A)) require_one_based_indexing(A...) nr = length(rows) sum(rows) == length(A) || throw(ArgumentError("mismatch between row sizes and number of arguments"))