diff --git a/stdlib/LinearAlgebra/src/structuredbroadcast.jl b/stdlib/LinearAlgebra/src/structuredbroadcast.jl index fcd5c68d48abe..68e0a163af664 100644 --- a/stdlib/LinearAlgebra/src/structuredbroadcast.jl +++ b/stdlib/LinearAlgebra/src/structuredbroadcast.jl @@ -102,6 +102,7 @@ function Base.similar(bc::Broadcasted{StructuredMatrixStyle{T}}, ::Type{ElType}) end function copyto!(dest::Diagonal, bc::Broadcasted{<:StructuredMatrixStyle}) + !isstructurepreserving(bc) && !fzeropreserving(bc) && copyto!(dest, convert(Broadcasted{Nothing}, bc)) axs = axes(dest) axes(bc) == axs || Broadcast.throwdm(axes(bc), axs) for i in axs[1] @@ -111,6 +112,7 @@ function copyto!(dest::Diagonal, bc::Broadcasted{<:StructuredMatrixStyle}) end function copyto!(dest::Bidiagonal, bc::Broadcasted{<:StructuredMatrixStyle}) + !isstructurepreserving(bc) && !fzeropreserving(bc) && copyto!(dest, convert(Broadcasted{Nothing}, bc)) axs = axes(dest) axes(bc) == axs || Broadcast.throwdm(axes(bc), axs) for i in axs[1] @@ -129,18 +131,22 @@ function copyto!(dest::Bidiagonal, bc::Broadcasted{<:StructuredMatrixStyle}) end function copyto!(dest::SymTridiagonal, bc::Broadcasted{<:StructuredMatrixStyle}) + !isstructurepreserving(bc) && !fzeropreserving(bc) && copyto!(dest, convert(Broadcasted{Nothing}, bc)) axs = axes(dest) axes(bc) == axs || Broadcast.throwdm(axes(bc), axs) for i in axs[1] dest.dv[i] = Broadcast._broadcast_getindex(bc, CartesianIndex(i, i)) end for i = 1:size(dest, 1)-1 - dest.ev[i] = Broadcast._broadcast_getindex(bc, CartesianIndex(i, i+1)) + v = Broadcast._broadcast_getindex(bc, CartesianIndex(i, i+1)) + v == Broadcast._broadcast_getindex(bc, CartesianIndex(i+1, i)) || throw(ArgumentError("broadcasted assignment breaks symmetry between locations ($i, $(i+1)) and ($(i+1), $i)")) + dest.ev[i] = v end return dest end function copyto!(dest::Tridiagonal, bc::Broadcasted{<:StructuredMatrixStyle}) + !isstructurepreserving(bc) && !fzeropreserving(bc) && copyto!(dest, convert(Broadcasted{Nothing}, bc)) axs = axes(dest) axes(bc) == axs || Broadcast.throwdm(axes(bc), axs) for i in axs[1] @@ -154,6 +160,7 @@ function copyto!(dest::Tridiagonal, bc::Broadcasted{<:StructuredMatrixStyle}) end function copyto!(dest::LowerTriangular, bc::Broadcasted{<:StructuredMatrixStyle}) + !isstructurepreserving(bc) && !fzeropreserving(bc) && copyto!(dest, convert(Broadcasted{Nothing}, bc)) axs = axes(dest) axes(bc) == axs || Broadcast.throwdm(axes(bc), axs) for j in axs[2] @@ -165,6 +172,7 @@ function copyto!(dest::LowerTriangular, bc::Broadcasted{<:StructuredMatrixStyle} end function copyto!(dest::UpperTriangular, bc::Broadcasted{<:StructuredMatrixStyle}) + !isstructurepreserving(bc) && !fzeropreserving(bc) && copyto!(dest, convert(Broadcasted{Nothing}, bc)) axs = axes(dest) axes(bc) == axs || Broadcast.throwdm(axes(bc), axs) for j in axs[2] diff --git a/stdlib/LinearAlgebra/test/structuredbroadcast.jl b/stdlib/LinearAlgebra/test/structuredbroadcast.jl index 2999da87094bb..c3aa70e2c964e 100644 --- a/stdlib/LinearAlgebra/test/structuredbroadcast.jl +++ b/stdlib/LinearAlgebra/test/structuredbroadcast.jl @@ -51,14 +51,37 @@ end A = rand(N, N) sA = A + copy(A') D = Diagonal(rand(N)) - B = Bidiagonal(rand(N), rand(N - 1), :U) + Bu = Bidiagonal(rand(N), rand(N - 1), :U) + Bl = Bidiagonal(rand(N), rand(N - 1), :L) T = Tridiagonal(rand(N - 1), rand(N), rand(N - 1)) + ◣ = LowerTriangular(rand(N,N)) + ◥ = UpperTriangular(rand(N,N)) + @test broadcast!(sin, copy(D), D) == Diagonal(sin.(D)) - @test broadcast!(sin, copy(B), B) == Bidiagonal(sin.(B), :U) + @test broadcast!(sin, copy(Bu), Bu) == Bidiagonal(sin.(Bu), :U) + @test broadcast!(sin, copy(Bl), Bl) == Bidiagonal(sin.(Bl), :L) @test broadcast!(sin, copy(T), T) == Tridiagonal(sin.(T)) + @test broadcast!(sin, copy(◣), ◣) == LowerTriangular(sin.(◣)) + @test broadcast!(sin, copy(◥), ◥) == UpperTriangular(sin.(◥)) @test broadcast!(*, copy(D), D, A) == Diagonal(broadcast(*, D, A)) - @test broadcast!(*, copy(B), B, A) == Bidiagonal(broadcast(*, B, A), :U) + @test broadcast!(*, copy(Bu), Bu, A) == Bidiagonal(broadcast(*, Bu, A), :U) + @test broadcast!(*, copy(Bl), Bl, A) == Bidiagonal(broadcast(*, Bl, A), :L) @test broadcast!(*, copy(T), T, A) == Tridiagonal(broadcast(*, T, A)) + @test broadcast!(*, copy(◣), ◣, A) == LowerTriangular(broadcast(*, ◣, A)) + @test broadcast!(*, copy(◥), ◥, A) == UpperTriangular(broadcast(*, ◥, A)) + + @test_throws ArgumentError broadcast!(cos, copy(D), D) == Diagonal(sin.(D)) + @test_throws ArgumentError broadcast!(cos, copy(Bu), Bu) == Bidiagonal(sin.(Bu), :U) + @test_throws ArgumentError broadcast!(cos, copy(Bl), Bl) == Bidiagonal(sin.(Bl), :L) + @test_throws ArgumentError broadcast!(cos, copy(T), T) == Tridiagonal(sin.(T)) + @test_throws ArgumentError broadcast!(cos, copy(◣), ◣) == LowerTriangular(sin.(◣)) + @test_throws ArgumentError broadcast!(cos, copy(◥), ◥) == UpperTriangular(sin.(◥)) + @test_throws ArgumentError broadcast!(+, copy(D), D, A) == Diagonal(broadcast(*, D, A)) + @test_throws ArgumentError broadcast!(+, copy(Bu), Bu, A) == Bidiagonal(broadcast(*, Bu, A), :U) + @test_throws ArgumentError broadcast!(+, copy(Bl), Bl, A) == Bidiagonal(broadcast(*, Bl, A), :L) + @test_throws ArgumentError broadcast!(+, copy(T), T, A) == Tridiagonal(broadcast(*, T, A)) + @test_throws ArgumentError broadcast!(+, copy(◣), ◣, A) == LowerTriangular(broadcast(*, ◣, A)) + @test_throws ArgumentError broadcast!(+, copy(◥), ◥, A) == UpperTriangular(broadcast(*, ◥, A)) end @testset "map[!] over combinations of structured matrices" begin