From 5e44b1a82390568d326e012f803edaa91deeaa11 Mon Sep 17 00:00:00 2001 From: Robert Chiniquy Date: Mon, 20 Feb 2012 16:57:47 -0800 Subject: [PATCH] rch - add combinations(), integer_partitions(), and partitions() These are as described in TAoCP 7.2.1.3, 7.2.1.4, and 7.2.1.5. All three use coroutines. Each produce() call, combinations() and integer_partitions() return Array, partitions() returns a set of sets. partitions() could have been written to return a generator which would return each set from an individual partitioning in turn, I wasn't sure what the preferred behavior would be so I went simple if clunky. --- j/combinatorics.j | 150 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 150 insertions(+) diff --git a/j/combinatorics.j b/j/combinatorics.j index a902b6415ab46..bf6bf80e56e93 100644 --- a/j/combinatorics.j +++ b/j/combinatorics.j @@ -115,3 +115,153 @@ function nthperm!(a::AbstractVector, k::Integer) a end nthperm(a::AbstractVector, k::Integer) = nthperm!(copy(a),k) + +# Algorithm T from TAoCP 7.2.1.3 +function combinations(a::AbstractVector, t::Integer) + # T1 + n = length(a) + c = [0:t-1, n, 0] + j = t + if (t >= n) + # Algorithm T assumes t < n, just return a + produce(a) + else + while true + # T2 + produce([ a[c[i]+1] | i=1:t ]) + + if j > 0 + x = j + else + # T3 + if c[1] + 1 < c[2] + c[1] = c[1] + 1 + continue # to T2 + else + j = 2 + end + + # T4 + need_j = true + while need_j + need_j = false + + c[j-1] = j-2 + x = c[j] + 1 + if x == c[j + 1] + j = j + 1 + need_j = true # loop to T4 + end + end + + # T5 + if j > t + # terminate + break + end + end + + # T6 + c[j] = x + j = j - 1 + end + end +end + +# Algorithm H from TAoCP 7.2.1.4 +# Partition n into m parts +function integer_partitions(n::Int64, m::Int64) + if n < m || m < 2 + throw("Assumed n >= m >= 2!") + end + # H1 + a = [n - m + 1, ones(m), -1] + # H2 + while true + produce(a[1:m]) + if a[2] < a[1] - 1 + # H3 + a[1] = a[1] - 1 + a[2] = a[2] + 1 + continue # to H2 + end + # H4 + j = 3 + s = a[1] + a[2] - 1 + if a[j] >= a[1] - 1 + while true + s = s + a[j] + j = j + 1 + if a[j] < a[1] - 1 + break # end loop + end + end + end + # H5 + if j > m + break # terminate + end + x = a[j] + 1 + a[j] = x + j = j - 1 + # H6 + while j > 1 + a[j] = x + s = s - x + j = j - 1 + end + a[1] = s + end +end + +# Algorithm H from TAoCP 7.2.1.5 +# Set partitions +function partitions(s::AbstractVector) + + n = length(s) + # H1 + a = zeros(n) + b = ones(n-1) + m = 1 + + while true + # H2 + # convert from restricted growth string a[1:n] to set of sets + sets = HashTable() + for k = 1:n + assign(sets, add(get(sets, a[k], Set()), s[k]), a[k]) + end + result = Set() + for k = 1:n + add(result, get(sets, a[k], false)) + end + #produce(a[1:n]) # this is the string representing set assignment + produce(result) + + if a[n] != m + # H3 + a[n] = a[n] + 1 + continue # to H2 + end + # H4 + j = n - 1 + while a[j] == b[j] + j = j - 1 + end + # H5 + if j == 1 + break # terminate + end + a[j] = a[j] + 1 + # H6 + m = b[j] + (a[j] == b[j]) + j = j + 1 + while j < n + a[j] = 0 + b[j] = m + j = j + 1 + end + a[n] = 0 + end +end +