-
Notifications
You must be signed in to change notification settings - Fork 421
/
Copy pathuniform.jl
132 lines (95 loc) · 3.2 KB
/
uniform.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
Uniform(a,b)
The *continuous uniform distribution* over an interval ``[a, b]`` has probability density function
```math
f(x; a, b) = \\frac{1}{b - a}, \\quad a \\le x \\le b
```
```julia
Uniform() # Uniform distribution over [0, 1]
Uniform(a, b) # Uniform distribution over [a, b]
params(d) # Get the parameters, i.e. (a, b)
minimum(d) # Get the lower bound, i.e. a
maximum(d) # Get the upper bound, i.e. b
location(d) # Get the location parameter, i.e. a
scale(d) # Get the scale parameter, i.e. b - a
```
External links
* [Uniform distribution (continuous) on Wikipedia](http://en.wikipedia.org/wiki/Uniform_distribution_(continuous))
"""
struct Uniform{T<:Real} <: ContinuousUnivariateDistribution
a::T
b::T
Uniform{T}(a::T, b::T) where {T <: Real} = new{T}(a, b)
end
function Uniform(a::T, b::T; check_args=true) where {T <: Real}
check_args && @check_args(Uniform, a < b)
return Uniform{T}(a, b)
end
Uniform(a::Real, b::Real) = Uniform(promote(a, b)...)
Uniform(a::Integer, b::Integer) = Uniform(float(a), float(b))
Uniform() = Uniform(0.0, 1.0, check_args=false)
@distr_support Uniform d.a d.b
#### Conversions
convert(::Type{Uniform{T}}, a::Real, b::Real) where {T<:Real} = Uniform(T(a), T(b))
convert(::Type{Uniform{T}}, d::Uniform{S}) where {T<:Real, S<:Real} = Uniform(T(d.a), T(d.b), check_args=false)
#### Parameters
params(d::Uniform) = (d.a, d.b)
partype(::Uniform{T}) where {T<:Real} = T
location(d::Uniform) = d.a
scale(d::Uniform) = d.b - d.a
#### Statistics
mean(d::Uniform) = middle(d.a, d.b)
median(d::Uniform) = mean(d)
mode(d::Uniform) = mean(d)
modes(d::Uniform) = Float64[]
var(d::Uniform) = (w = d.b - d.a; w^2 / 12)
skewness(d::Uniform{T}) where {T<:Real} = zero(T)
kurtosis(d::Uniform{T}) where {T<:Real} = -6/5*one(T)
entropy(d::Uniform) = log(d.b - d.a)
#### Evaluation
pdf(d::Uniform{T}, x::Real) where {T<:Real} = insupport(d, x) ? 1 / (d.b - d.a) : zero(T)
logpdf(d::Uniform{T}, x::Real) where {T<:Real} = insupport(d, x) ? -log(d.b - d.a) : -T(Inf)
function cdf(d::Uniform{T}, x::Real) where T<:Real
(a, b) = params(d)
x <= a ? zero(T) :
x >= d.b ? one(T) : (x - a) / (b - a)
end
function ccdf(d::Uniform{T}, x::Real) where T<:Real
(a, b) = params(d)
x <= a ? one(T) :
x >= d.b ? zero(T) : (b - x) / (b - a)
end
quantile(d::Uniform, p::Real) = d.a + p * (d.b - d.a)
cquantile(d::Uniform, p::Real) = d.b + p * (d.a - d.b)
function mgf(d::Uniform, t::Real)
(a, b) = params(d)
u = (b - a) * t / 2
u == zero(u) && return one(u)
v = (a + b) * t / 2
exp(v) * (sinh(u) / u)
end
function cf(d::Uniform, t::Real)
(a, b) = params(d)
u = (b - a) * t / 2
u == zero(u) && return complex(one(u))
v = (a + b) * t / 2
cis(v) * (sin(u) / u)
end
#### Sampling
rand(rng::AbstractRNG, d::Uniform) = d.a + (d.b - d.a) * rand(rng)
#### Fitting
function fit_mle(::Type{<:Uniform}, x::AbstractArray{T}) where T<:Real
if isempty(x)
throw(ArgumentError("x cannot be empty."))
end
xmin = xmax = x[1]
for i = 2:length(x)
xi = x[i]
if xi < xmin
xmin = xi
elseif xi > xmax
xmax = xi
end
end
Uniform(xmin, xmax)
end