-
Notifications
You must be signed in to change notification settings - Fork 421
/
Copy pathunivariates.jl
745 lines (583 loc) · 19.7 KB
/
univariates.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
#### Domain && Support
struct RealInterval{T<:Real}
lb::T
ub::T
end
RealInterval(lb::Real, ub::Real) = RealInterval(promote(lb, ub)...)
minimum(r::RealInterval) = r.lb
maximum(r::RealInterval) = r.ub
extrema(r::RealInterval) = (r.lb, r.ub)
in(x::Real, r::RealInterval) = r.lb <= x <= r.ub
isbounded(d::Union{D,Type{D}}) where {D<:UnivariateDistribution} = isupperbounded(d) && islowerbounded(d)
islowerbounded(d::Union{D,Type{D}}) where {D<:UnivariateDistribution} = minimum(d) > -Inf
isupperbounded(d::Union{D,Type{D}}) where {D<:UnivariateDistribution} = maximum(d) < +Inf
hasfinitesupport(d::Union{D,Type{D}}) where {D<:DiscreteUnivariateDistribution} = isbounded(d)
hasfinitesupport(d::Union{D,Type{D}}) where {D<:ContinuousUnivariateDistribution} = false
"""
params(d::UnivariateDistribution)
Return a tuple of parameters. Let `d` be a distribution of type `D`, then `D(params(d)...)`
will construct exactly the same distribution as ``d``.
"""
params(d::UnivariateDistribution)
"""
scale(d::UnivariateDistribution)
Get the scale parameter.
"""
scale(d::UnivariateDistribution)
"""
location(d::UnivariateDistribution)
Get the location parameter.
"""
location(d::UnivariateDistribution)
"""
shape(d::UnivariateDistribution)
Get the shape parameter.
"""
shape(d::UnivariateDistribution)
"""
rate(d::UnivariateDistribution)
Get the rate parameter.
"""
rate(d::UnivariateDistribution)
"""
ncategories(d::UnivariateDistribution)
Get the number of categories.
"""
ncategories(d::UnivariateDistribution)
"""
ntrials(d::UnivariateDistribution)
Get the number of trials.
"""
ntrials(d::UnivariateDistribution)
"""
dof(d::UnivariateDistribution)
Get the degrees of freedom.
"""
dof(d::UnivariateDistribution)
"""
minimum(d::UnivariateDistribution)
Return the minimum of the support of `d`.
"""
minimum(d::UnivariateDistribution)
"""
maximum(d::UnivariateDistribution)
Return the maximum of the support of `d`.
"""
maximum(d::UnivariateDistribution)
"""
extrema(d::UnivariateDistribution)
Return the minimum and maximum of the support of `d` as a 2-tuple.
"""
extrema(d::UnivariateDistribution) = (minimum(d), maximum(d))
"""
insupport(d::UnivariateDistribution, x::Any)
When `x` is a scalar, it returns whether x is within the support of `d`
(e.g., `insupport(d, x) = minimum(d) <= x <= maximum(d)`).
When `x` is an array, it returns whether every element in x is within the support of `d`.
Generic fallback methods are provided, but it is often the case that `insupport` can be
done more efficiently, and a specialized `insupport` is thus desirable.
You should also override this function if the support is composed of multiple disjoint intervals.
"""
insupport{D<:UnivariateDistribution}(d::Union{D, Type{D}}, x::Any)
function insupport!(r::AbstractArray, d::Union{D,Type{D}}, X::AbstractArray) where D<:UnivariateDistribution
length(r) == length(X) ||
throw(DimensionMismatch("Inconsistent array dimensions."))
for i in 1 : length(X)
@inbounds r[i] = insupport(d, X[i])
end
return r
end
insupport(d::Union{D,Type{D}}, X::AbstractArray) where {D<:UnivariateDistribution} =
insupport!(BitArray(undef, size(X)), d, X)
insupport(d::Union{D,Type{D}},x::Real) where {D<:ContinuousUnivariateDistribution} = minimum(d) <= x <= maximum(d)
insupport(d::Union{D,Type{D}},x::Real) where {D<:DiscreteUnivariateDistribution} = isinteger(x) && minimum(d) <= x <= maximum(d)
support(d::Union{D,Type{D}}) where {D<:ContinuousUnivariateDistribution} = RealInterval(minimum(d), maximum(d))
support(d::Union{D,Type{D}}) where {D<:DiscreteUnivariateDistribution} = round(Int, minimum(d)):round(Int, maximum(d))
# Type used for dispatch on finite support
# T = true or false
struct FiniteSupport{T} end
## macros to declare support
macro distr_support(D, lb, ub)
D_has_constantbounds = (isa(ub, Number) || ub == :Inf) &&
(isa(lb, Number) || lb == :(-Inf))
paramdecl = D_has_constantbounds ? :(d::Union{$D, Type{<:$D}}) : :(d::$D)
# overall
esc(quote
minimum($(paramdecl)) = $lb
maximum($(paramdecl)) = $ub
end)
end
##### generic methods (fallback) #####
## sampling
# multiple univariate, must allocate array
rand(rng::AbstractRNG, s::Sampleable{Univariate}, dims::Dims) =
rand!(rng, s, Array{eltype(s)}(undef, dims))
rand(rng::AbstractRNG, s::Sampleable{Univariate,Continuous}, dims::Dims) =
rand!(rng, s, Array{float(eltype(s))}(undef, dims))
# multiple univariate with pre-allocated array
# we use a function barrier since for some distributions `sampler(s)` is not type-stable:
# https://github.com/JuliaStats/Distributions.jl/pull/1281
function rand!(rng::AbstractRNG, s::Sampleable{Univariate}, A::AbstractArray)
return _rand_loops!(rng, sampler(s), A)
end
function _rand_loops!(rng::AbstractRNG, sampler::Sampleable{Univariate}, A::AbstractArray)
for i in eachindex(A)
@inbounds A[i] = rand(rng, sampler)
end
return A
end
"""
rand(rng::AbstractRNG, d::UnivariateDistribution)
Generate a scalar sample from `d`. The general fallback is `quantile(d, rand())`.
"""
rand(rng::AbstractRNG, d::UnivariateDistribution) = quantile(d, rand(rng))
"""
rand!(rng::AbstractRNG, ::UnivariateDistribution, ::AbstractArray)
Sample a univariate distribution and store the results in the provided array.
"""
rand!(rng::AbstractRNG, ::UnivariateDistribution, ::AbstractArray)
## statistics
"""
mean(d::UnivariateDistribution)
Compute the expectation.
"""
mean(d::UnivariateDistribution)
"""
var(d::UnivariateDistribution)
Compute the variance. (A generic std is provided as `std(d) = sqrt(var(d))`)
"""
var(d::UnivariateDistribution)
"""
std(d::UnivariateDistribution)
Return the standard deviation of distribution `d`, i.e. `sqrt(var(d))`.
"""
std(d::UnivariateDistribution) = sqrt(var(d))
"""
median(d::UnivariateDistribution)
Return the median value of distribution `d`.
"""
median(d::UnivariateDistribution) = quantile(d, 0.5)
"""
modes(d::UnivariateDistribution)
Get all modes (if this makes sense).
"""
modes(d::UnivariateDistribution) = [mode(d)]
"""
mode(d::UnivariateDistribution)
Returns the first mode.
"""
mode(d::UnivariateDistribution)
"""
skewness(d::UnivariateDistribution)
Compute the skewness.
"""
skewness(d::UnivariateDistribution)
"""
entropy(d::UnivariateDistribution)
Compute the entropy value of distribution `d`.
"""
entropy(d::UnivariateDistribution)
"""
entropy(d::UnivariateDistribution, b::Real)
Compute the entropy value of distribution `d`, w.r.t. a given base.
"""
entropy(d::UnivariateDistribution, b::Real) = entropy(d) / log(b)
"""
isplatykurtic(d)
Return whether `d` is platykurtic (*i.e* `kurtosis(d) < 0`).
"""
isplatykurtic(d::UnivariateDistribution) = kurtosis(d) < 0.0
"""
isleptokurtic(d)
Return whether `d` is leptokurtic (*i.e* `kurtosis(d) > 0`).
"""
isleptokurtic(d::UnivariateDistribution) = kurtosis(d) > 0.0
"""
ismesokurtic(d)
Return whether `d` is mesokurtic (*i.e* `kurtosis(d) == 0`).
"""
ismesokurtic(d::UnivariateDistribution) = kurtosis(d) ≈ 0.0
"""
kurtosis(d::UnivariateDistribution)
Compute the excessive kurtosis.
"""
kurtosis(d::UnivariateDistribution)
"""
kurtosis(d::Distribution, correction::Bool)
Computes excess kurtosis by default. Proper kurtosis can be returned with correction=false
"""
function kurtosis(d::Distribution, correction::Bool)
if correction
return kurtosis(d)
else
return kurtosis(d) + 3.0
end
end
excess(d::Distribution) = kurtosis(d)
excess_kurtosis(d::Distribution) = kurtosis(d)
proper_kurtosis(d::Distribution) = kurtosis(d, false)
"""
mgf(d::UnivariateDistribution, t)
Evaluate the moment generating function of distribution `d`.
"""
mgf(d::UnivariateDistribution, t)
"""
cf(d::UnivariateDistribution, t)
Evaluate the characteristic function of distribution `d`.
"""
cf(d::UnivariateDistribution, t)
#### pdf, cdf, and friends
# pdf
"""
pdf(d::UnivariateDistribution, x::Real)
Evaluate the probability density (mass) at `x`.
See also: [`logpdf`](@ref).
"""
pdf(d::UnivariateDistribution, x::Real) = exp(logpdf(d, x))
"""
logpdf(d::UnivariateDistribution, x::Real)
Evaluate the logarithm of probability density (mass) at `x`.
See also: [`pdf`](@ref).
"""
logpdf(d::UnivariateDistribution, x::Real)
"""
cdf(d::UnivariateDistribution, x::Real)
Evaluate the cumulative probability at `x`.
See also [`ccdf`](@ref), [`logcdf`](@ref), and [`logccdf`](@ref).
"""
cdf(d::UnivariateDistribution, x::Real)
# fallback for discrete distribution:
# base computation on `cdf(d, floor(Int, x))` and handle `NaN` and `±Inf`
# this is only correct for distributions with integer-valued support but will error if
# `cdf(d, ::Int)` is not defined (so it should not return incorrect values silently)
cdf(d::DiscreteUnivariateDistribution, x::Real) = cdf_int(d, x)
"""
ccdf(d::UnivariateDistribution, x::Real)
The complementary cumulative function evaluated at `x`, i.e. `1 - cdf(d, x)`.
"""
ccdf(d::UnivariateDistribution, x::Real) = 1 - cdf(d, x)
"""
logcdf(d::UnivariateDistribution, x::Real)
The logarithm of the cumulative function value(s) evaluated at `x`, i.e. `log(cdf(x))`.
"""
logcdf(d::UnivariateDistribution, x::Real) = log(cdf(d, x))
"""
logdiffcdf(d::UnivariateDistribution, x::Real, y::Real)
The natural logarithm of the difference between the cumulative density function at `x` and `y`, i.e. `log(cdf(x) - cdf(y))`.
"""
function logdiffcdf(d::UnivariateDistribution, x::Real, y::Real)
# Promote to ensure that we don't compute logcdf in low precision and then promote
_x, _y = promote(x, y)
_x <= _y && throw(ArgumentError("requires x > y."))
u = logcdf(d, _x)
v = logcdf(d, _y)
return u + log1mexp(v - u)
end
"""
logccdf(d::UnivariateDistribution, x::Real)
The logarithm of the complementary cumulative function values evaluated at x, i.e. `log(ccdf(x))`.
"""
logccdf(d::UnivariateDistribution, x::Real) = log(ccdf(d, x))
"""
quantile(d::UnivariateDistribution, q::Real)
Evaluate the inverse cumulative distribution function at `q`.
See also: [`cquantile`](@ref), [`invlogcdf`](@ref), and [`invlogccdf`](@ref).
"""
quantile(d::UnivariateDistribution, p::Real)
"""
cquantile(d::UnivariateDistribution, q::Real)
The complementary quantile value, i.e. `quantile(d, 1-q)`.
"""
cquantile(d::UnivariateDistribution, p::Real) = quantile(d, 1.0 - p)
"""
invlogcdf(d::UnivariateDistribution, lp::Real)
The inverse function of logcdf.
"""
invlogcdf(d::UnivariateDistribution, lp::Real) = quantile(d, exp(lp))
"""
invlogccdf(d::UnivariateDistribution, lp::Real)
The inverse function of logccdf.
"""
invlogccdf(d::UnivariateDistribution, lp::Real) = quantile(d, -expm1(lp))
# gradlogpdf
gradlogpdf(d::ContinuousUnivariateDistribution, x::Real) = throw(MethodError(gradlogpdf, (d, x)))
function _pdf_fill_outside!(r::AbstractArray, d::DiscreteUnivariateDistribution, X::UnitRange)
vl = vfirst = first(X)
vr = vlast = last(X)
n = vlast - vfirst + 1
if islowerbounded(d)
lb = minimum(d)
if vl < lb
vl = lb
end
end
if isupperbounded(d)
ub = maximum(d)
if vr > ub
vr = ub
end
end
# fill left part
if vl > vfirst
for i = 1:(vl - vfirst)
r[i] = 0.0
end
end
# fill central part: with non-zero pdf
fm1 = vfirst - 1
for v = vl:vr
r[v - fm1] = pdf(d, v)
end
# fill right part
if vr < vlast
for i = (vr-vfirst+2):n
r[i] = 0.0
end
end
return vl, vr, vfirst, vlast
end
function _pdf!(r::AbstractArray, d::DiscreteUnivariateDistribution, X::UnitRange)
vl,vr, vfirst, vlast = _pdf_fill_outside!(r, d, X)
# fill central part: with non-zero pdf
fm1 = vfirst - 1
for v = vl:vr
r[v - fm1] = pdf(d, v)
end
return r
end
abstract type RecursiveProbabilityEvaluator end
function _pdf!(r::AbstractArray, d::DiscreteUnivariateDistribution, X::UnitRange, rpe::RecursiveProbabilityEvaluator)
vl,vr, vfirst, vlast = _pdf_fill_outside!(r, d, X)
# fill central part: with non-zero pdf
if vl <= vr
fm1 = vfirst - 1
r[vl - fm1] = pv = pdf(d, vl)
for v = (vl+1):vr
r[v - fm1] = pv = nextpdf(rpe, pv, v)
end
end
return r
end
## loglikelihood
"""
loglikelihood(d::UnivariateDistribution, x::Union{Real,AbstractArray})
The log-likelihood of distribution `d` with respect to all samples contained in `x`.
Here `x` can be a single scalar sample or an array of samples.
"""
loglikelihood(d::UnivariateDistribution, X::AbstractArray) = sum(x -> logpdf(d, x), X)
loglikelihood(d::UnivariateDistribution, x::Real) = logpdf(d, x)
### special definitions for distributions with integer-valued support
function cdf_int(d::DiscreteUnivariateDistribution, x::Real)
# handle `NaN` and `±Inf` which can't be truncated to `Int`
isfinite_x = isfinite(x)
_x = isfinite_x ? x : zero(x)
c = float(cdf(d, floor(Int, _x)))
return if isfinite_x
c
elseif isnan(x)
oftype(c, NaN)
elseif x < 0
zero(c)
else
one(c)
end
end
function ccdf_int(d::DiscreteUnivariateDistribution, x::Real)
# handle `NaN` and `±Inf` which can't be truncated to `Int`
isfinite_x = isfinite(x)
_x = isfinite_x ? x : zero(x)
c = float(ccdf(d, floor(Int, _x)))
return if isfinite_x
c
elseif isnan(x)
oftype(c, NaN)
elseif x < 0
one(c)
else
zero(c)
end
end
function logcdf_int(d::DiscreteUnivariateDistribution, x::Real)
# handle `NaN` and `±Inf` which can't be truncated to `Int`
isfinite_x = isfinite(x)
_x = isfinite_x ? x : zero(x)
c = float(logcdf(d, floor(Int, _x)))
return if isfinite_x
c
elseif isnan(x)
oftype(c, NaN)
elseif x < 0
oftype(c, -Inf)
else
zero(c)
end
end
function logccdf_int(d::DiscreteUnivariateDistribution, x::Real)
# handle `NaN` and `±Inf` which can't be truncated to `Int`
isfinite_x = isfinite(x)
_x = isfinite_x ? x : zero(x)
c = float(logccdf(d, floor(Int, _x)))
return if isfinite_x
c
elseif isnan(x)
oftype(c, NaN)
elseif x < 0
zero(c)
else
oftype(c, -Inf)
end
end
# implementation of the cdf for distributions whose support is a unitrange of integers
# note: incorrect for discrete distributions whose support includes non-integer numbers
function integerunitrange_cdf(d::DiscreteUnivariateDistribution, x::Integer)
minimum_d, maximum_d = extrema(d)
isfinite(minimum_d) || isfinite(maximum_d) || error("support is unbounded")
result = if isfinite(minimum_d) && !(isfinite(maximum_d) && x >= div(minimum_d + maximum_d, 2))
c = sum(Base.Fix1(pdf, d), minimum_d:(max(x, minimum_d)))
x < minimum_d ? zero(c) : c
else
c = 1 - sum(Base.Fix1(pdf, d), (min(x + 1, maximum_d)):maximum_d)
x >= maximum_d ? one(c) : c
end
return result
end
function integerunitrange_ccdf(d::DiscreteUnivariateDistribution, x::Integer)
minimum_d, maximum_d = extrema(d)
isfinite(minimum_d) || isfinite(maximum_d) || error("support is unbounded")
result = if isfinite(minimum_d) && !(isfinite(maximum_d) && x >= div(minimum_d + maximum_d, 2))
c = 1 - sum(Base.Fix1(pdf, d), minimum_d:(max(x, minimum_d)))
x < minimum_d ? one(c) : c
else
c = sum(Base.Fix1(pdf, d), (min(x + 1, maximum_d)):maximum_d)
x >= maximum_d ? zero(c) : c
end
return result
end
function integerunitrange_logcdf(d::DiscreteUnivariateDistribution, x::Integer)
minimum_d, maximum_d = extrema(d)
isfinite(minimum_d) || isfinite(maximum_d) || error("support is unbounded")
result = if isfinite(minimum_d) && !(isfinite(maximum_d) && x >= div(minimum_d + maximum_d, 2))
c = logsumexp(logpdf(d, y) for y in minimum_d:(max(x, minimum_d)))
x < minimum_d ? oftype(c, -Inf) : c
else
c = log1mexp(logsumexp(logpdf(d, y) for y in (min(x + 1, maximum_d)):maximum_d))
x >= maximum_d ? zero(c) : c
end
return result
end
function integerunitrange_logccdf(d::DiscreteUnivariateDistribution, x::Integer)
minimum_d, maximum_d = extrema(d)
isfinite(minimum_d) || isfinite(maximum_d) || error("support is unbounded")
result = if isfinite(minimum_d) && !(isfinite(maximum_d) && x >= div(minimum_d + maximum_d, 2))
c = log1mexp(logsumexp(logpdf(d, y) for y in minimum_d:(max(x, minimum_d))))
x < minimum_d ? zero(c) : c
else
c = logsumexp(logpdf(d, y) for y in (min(x + 1, maximum_d)):maximum_d)
x >= maximum_d ? oftype(c, -Inf) : c
end
return result
end
### macros to use StatsFuns for method implementation
macro _delegate_statsfuns(D, fpre, psyms...)
# function names from StatsFuns
fpdf = Symbol(fpre, "pdf")
flogpdf = Symbol(fpre, "logpdf")
fcdf = Symbol(fpre, "cdf")
fccdf = Symbol(fpre, "ccdf")
flogcdf = Symbol(fpre, "logcdf")
flogccdf = Symbol(fpre, "logccdf")
finvcdf = Symbol(fpre, "invcdf")
finvccdf = Symbol(fpre, "invccdf")
finvlogcdf = Symbol(fpre, "invlogcdf")
finvlogccdf = Symbol(fpre, "invlogccdf")
# parameter fields
pargs = [Expr(:(.), :d, Expr(:quote, s)) for s in psyms]
# output type of `quantile` etc.
T = :($D isa DiscreteUnivariateDistribution ? Int : Real)
return quote
$Distributions.pdf(d::$D, x::Real) = $(fpdf)($(pargs...), x)
$Distributions.logpdf(d::$D, x::Real) = $(flogpdf)($(pargs...), x)
$Distributions.cdf(d::$D, x::Real) = $(fcdf)($(pargs...), x)
$Distributions.logcdf(d::$D, x::Real) = $(flogcdf)($(pargs...), x)
$Distributions.ccdf(d::$D, x::Real) = $(fccdf)($(pargs...), x)
$Distributions.logccdf(d::$D, x::Real) = $(flogccdf)($(pargs...), x)
$Distributions.quantile(d::$D, q::Real) = convert($T, $(finvcdf)($(pargs...), q))
$Distributions.cquantile(d::$D, q::Real) = convert($T, $(finvccdf)($(pargs...), q))
$Distributions.invlogcdf(d::$D, lq::Real) = convert($T, $(finvlogcdf)($(pargs...), lq))
$Distributions.invlogccdf(d::$D, lq::Real) = convert($T, $(finvlogccdf)($(pargs...), lq))
end
end
##### specific distributions #####
const discrete_distributions = [
"bernoulli",
"betabinomial",
"binomial",
"dirac",
"discreteuniform",
"discretenonparametric",
"categorical",
"geometric",
"hypergeometric",
"negativebinomial",
"noncentralhypergeometric",
"poisson",
"skellam",
"soliton",
"poissonbinomial"
]
const continuous_distributions = [
"arcsine",
"beta",
"betaprime",
"biweight",
"cauchy",
"chernoff",
"chisq", # Chi depends on Chisq
"chi",
"cosine",
"epanechnikov",
"exponential",
"fdist",
"frechet",
"gamma", "erlang",
"pgeneralizedgaussian", # GeneralizedGaussian depends on Gamma
"generalizedpareto",
"generalizedextremevalue",
"gumbel",
"inversegamma",
"inversegaussian",
"kolmogorov",
"ksdist",
"ksonesided",
"laplace",
"levy",
"logistic",
"noncentralbeta",
"noncentralchisq",
"noncentralf",
"noncentralt",
"normal",
"normalcanon",
"normalinversegaussian",
"lognormal", # LogNormal depends on Normal
"logitnormal", # LogitNormal depends on Normal
"pareto",
"rayleigh",
"semicircle",
"skewnormal",
"studentizedrange",
"symtriangular",
"tdist",
"triangular",
"triweight",
"uniform",
"vonmises",
"weibull"
]
include(joinpath("univariate", "locationscale.jl"))
for dname in discrete_distributions
include(joinpath("univariate", "discrete", "$(dname).jl"))
end
for dname in continuous_distributions
include(joinpath("univariate", "continuous", "$(dname).jl"))
end