-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauto_ru_parcer.py
236 lines (212 loc) · 8.69 KB
/
auto_ru_parcer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from selenium import webdriver
from bs4 import BeautifulSoup
from tqdm import tqdm
import pandas as pd
import time
import datetime
import pickle
import stats
def open_auto_ru():
driver = webdriver.Firefox(executable_path=r'./geckodriver')
driver.implicitly_wait(5)
href = 'https://auto.ru/catalog/cars/'
driver.get(href)
time.sleep(1)
btn_class="search-form-v2-mmm"
elem = driver.find_elements_by_class_name(btn_class)[0]
time.sleep(0.5)
elem.click()
return driver
def list_marks():
driver = open_auto_ru()
car_type_class = 'link'
elems = driver.find_elements_by_class_name(car_type_class)
elems = [elem for elem in elems if 'link link_pseudo link_theme_auto' in elem.get_attribute("class")]
marks = set()
for elem in elems:
mark = eval(elem.get_attribute('data-bem'))['search-form-v2-item']['name']
marks.add(mark)
driver.close()
return marks
def list_models(mark):
driver = open_auto_ru()
car_type_class = 'link'
elems = driver.find_elements_by_class_name(car_type_class)
elems = [elem for elem in elems if 'link link_pseudo link_theme_auto' in elem.get_attribute("class")]
for elem in elems:
if mark == eval(elem.get_attribute('data-bem'))['search-form-v2-item']['name']:
break
mark_href = elem.get_attribute('href')
driver.get(mark_href)
time.sleep(1)
models = set()
elems = driver.find_elements_by_class_name(car_type_class)
elems = [elem for elem in elems if 'link link_pseudo link_theme_auto' in elem.get_attribute("class")]
for elem in elems:
model = eval(elem.get_attribute('data-bem'))['search-form-v2-item']['name']
models.add(model)
driver.close()
return mark, models
def get_car_params(elem):
soup = BeautifulSoup(elem.get_attribute('innerHTML'), 'html.parser')
model_name = soup.find('a', class_="Link ListingItemTitle-module__link").get_text()
link = soup.find("a", class_="Link ListingItemTitle-module__link")['href']
tech_attrs = []
for tech_attr in soup.find_all("div", class_="ListingItemTechSummaryDesktop__cell"):
tech_attr = tech_attr.get_text().replace('\u2009', '').replace('\xa0', '')
tech_attrs.append(tech_attr)
price = soup.find("div", class_="ListingItemPrice-module__content").get_text().replace('\xa0', '')
year = soup.find("div", class_="ListingItem-module__year").get_text()
dist = soup.find("div", class_="ListingItem-module__kmAge").get_text().replace('\xa0', '')
if 'Проверенный дилер' in str(soup):
verified_dealer = True
else:
verified_dealer = False
price_mark = soup.find("div", class_="OfferPriceBadge OfferPriceBadge_good")
if price_mark:
price_mark = price_mark.get_text()
try:
img = [x for x in str(soup).split() if ('320x240' in x) and ('avatars' in x)][0][12:-6]
except:
img = None
car = {
'model_name': model_name,
'link': link,
'engine': tech_attrs[0],
'transmission': tech_attrs[1],
'body': tech_attrs[2],
'drive': tech_attrs[3],
'colour': tech_attrs[4],
'price': price,
'year': year,
'dist': dist,
'verified_dealer': verified_dealer,
'price_mark': price_mark,
'img': img
}
return pd.Series(car)
def get_cars(mark, model, new=False):
if (len(mark.split()) > 1) or (len(model.split()) > 1):
driver = open_auto_ru()
car_type_class = 'link'
elems = driver.find_elements_by_class_name(car_type_class)
elems = [elem for elem in elems if 'link link_pseudo link_theme_auto' in elem.get_attribute("class")]
for elem in elems:
if mark == eval(elem.get_attribute('data-bem'))['search-form-v2-item']['name']:
break
mark_href = elem.get_attribute('href')
driver.get(mark_href)
time.sleep(1)
#find the right model
elems = driver.find_elements_by_class_name(car_type_class)
elems = [elem for elem in elems if 'link link_pseudo link_theme_auto' in elem.get_attribute("class")]
for elem in elems:
if model == eval(elem.get_attribute('data-bem'))['search-form-v2-item']['name']:
break
model_href = elem.get_attribute('href')
###iterate over pages
page_number = 1
cars = pd.DataFrame()
while True:
len1 = cars.shape[1]
if new:
href_new = 'https://auto.ru/moskva/cars/' + '/'.join(model_href.split('/')[-3:-1])+\
'/used' + '?top_days=1&page={}&output_type=list'.format(page_number)
else:
href_new = 'https://auto.ru/moskva/cars/' + '/'.join(model_href.split('/')[-3:-1])+\
'/used' + '?page={}&output_type=list'.format(page_number)
driver.get(href_new)
time.sleep(3)
car_class = 'ListingItem-module__description'
car_elems = driver.find_elements_by_class_name(car_class)
for car_elem in car_elems:
try:
this_car = get_car_params(car_elem)
cars = pd.concat([cars, this_car], axis=1)
except Exception as e:
pass
cars = cars.T
cars = cars.drop_duplicates()
cars = cars.T
if cars.shape[1] == len1:
break
page_number += 1
else:
driver = webdriver.Firefox(executable_path=r'./geckodriver')
driver.implicitly_wait(5)
###iterate over pages
page_number = 1
cars = pd.DataFrame()
while True:
len1 = cars.shape[1]
if new:
# href_new = 'https://auto.ru/moskva/cars/' + '/'.join(model_href.split('/')[-3:-1])+\
# '/used' + '?top_days=1&page={}&output_type=list'.format(page_number)
href_new = 'https://auto.ru/moskva/cars/' + '/'.join([mark, model])+\
'/used' + '?top_days=1&page={}&output_type=list'.format(page_number)
else:
# href_new = 'https://auto.ru/moskva/cars/' + '/'.join(model_href.split('/')[-3:-1])+\
# '/used' + '?page={}&output_type=list'.format(page_number)
href_new = 'https://auto.ru/moskva/cars/' + '/'.join([mark, model])+\
'/used' + '?page={}&output_type=list'.format(page_number)
driver.get(href_new)
time.sleep(3)
car_class = 'ListingItem-module__main'
car_elems = driver.find_elements_by_class_name(car_class)
print(len(car_elems))
for idx, car_elem in enumerate(car_elems):
try:
this_car = get_car_params(car_elem)
cars = pd.concat([cars, this_car], axis=1)
except Exception as e:
print(e, idx)
pass
cars = cars.T
cars = cars.drop_duplicates()
cars = cars.T
if cars.shape[1] == len1:
break
page_number += 1
###preprocess dataframe
cars = cars.T
print(cars.columns)
cars.price = cars.price.map(lambda x: int(x[:-1]))
cars['engine_volume'] = cars.engine.map(stats.engine_volume)
cars['horse_power'] = cars.engine.map(stats.engine_power)
cars['engine_oil'] = cars.engine.map(stats.engine_type)
cars['electro_power'] = cars.engine.map(stats.electro_power)
cars['mark'] = mark
cars['model'] = model
cars.dist = cars.dist.map(lambda x: int(x[:-2]))
driver.close()
return cars
def update_new():
with open("daily_models.txt", "rb") as fp: # Unpickling
daily_models = pickle.load(fp)
all_cars = pd.DataFrame()
for car_name in tqdm(daily_models):
cars = get_cars(car_name[0], car_name[1], new=True)
all_cars = pd.concat([all_cars, cars], axis=0)
all_cars = stats.get_prediction(all_cars)
all_cars.to_csv('daily_models.csv', index=False)
def main():
interesting_models = [
('Renault', 'Logan'),
('Kia', 'Rio'),
('Volkswagen', 'Polo'),
('Hyundai', 'Solaris'),
('Toyota', 'Corolla'),
('Skoda', 'Rapid'),
('Ford', 'Focus'),
('LADA (ВАЗ)', 'Vesta'),
('LADA (ВАЗ)', 'Granta'),
('LADA (ВАЗ)', 'Kalina')
]
all_cars = pd.DataFrame()
for car_name in tqdm(interesting_models):
cars = get_cars(car_name[0], car_name[1])
all_cars = pd.concat([all_cars, cars], axis=0)
date = datetime.datetime.now()
all_cars.to_csv('data/cars_{}_{}_{}.csv'.format(date.year, date.month, date.day), index=False)
if __name__ == "__main__":
main()