diff --git a/anomaly_detection/quantum_anomaly_detection.py b/anomaly_detection/quantum_anomaly_detection.py new file mode 100644 index 0000000..bcd8e71 --- /dev/null +++ b/anomaly_detection/quantum_anomaly_detection.py @@ -0,0 +1,47 @@ +# quantum_anomaly_detection.py + +import numpy as np +import qiskit as qk +from qiskit.visualization import plot_histogram, plot_bloch_vector +from qiskit.circuit.library import QFT +from qiskit.aqua.algorithms import QSVM +from qiskit.aqua.components.feature_maps import SecondOrderExpansion +from qiskit.aqua.components.variational_forms import RealAmplitudes +from qiskit.aqua.utils.supporting import minimize + +def create_quantum_anomaly_detection_model(training_data, testing_data, quantum_instance): + # Define the feature map + feature_map = SecondOrderExpansion(feature_dimension=training_data.shape[1], reps=1) + + # Define the variational form + variational_form = RealAmplitudes(feature_map.num_qubits, reps=1) + + # Create the QSVM model + qsvm = QSVM(feature_map=feature_map, variational_form=variational_form, quantum_instance=quantum_instance) + + # Train the QSVM model + qsvm.train(training_data) + + # Evaluate the QSVM model + qsvm_predictions = qsvm.predict(testing_data) + + return qsvm, qsvm_predictions + +def run_quantum_anomaly_detection(training_data, testing_data, quantum_instance): + qsvm, qsvm_predictions = create_quantum_anomaly_detection_model(training_data, testing_data, quantum_instance) + + # Calculate the accuracy of the QSVM model + accuracy = np.mean(qsvm_predictions == testing_data.argmax(axis=1)) + + print(f"Quantum Anomaly Detection Accuracy: {accuracy}") + +if __name__ == "__main__": + # Load your training and testing data here + training_data = ... + testing_data = ... + + # Create a quantum instance + quantum_instance = qk.Aer.get_backend("qasm_simulator") + + # Run the quantum anomaly detection + run_quantum_anomaly_detection(training_data, testing_data, quantum_instance)