forked from jianalex/se_hw6
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbst_bug.cpp
290 lines (269 loc) · 11 KB
/
bst_bug.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
//Binary Search Tree Program
#include "stdafx.h"
#include <iostream>
#include <cstdlib>
using namespace std;
class BinarySearchTree
{
private:
struct tree_node
{
tree_node* left;
tree_node* right;
int data
};
tree_node* root;
public:
BinarySearchTree()
{
root = NULL;
}
bool isEmpty() const { return root == NULL; }
void print_inorder();
void inorder(tree_node*);
void print_preorder();
void preorder(tree_node*);
void print_postorder();
void postorder(tree_node*);
void insert(int);
void remove(int);
}
// Smaller elements go left
// larger elements go right
viod BinarySearchTree::insert(int d)
{
tree_node* t = new tree_node;
tree_node* parent;
t.data = d;
t->left = NULL;
t->right = NULL;
parent = NULL;
// is this a new tree?
if (isEmpty()) root = t;
else
{
//Note: ALL insertions are as leaf nodes
tree_node* curr;
curr = root;
// Find the Node's parent
while (curr)
{
parent = curr;
if (t->data < curr->data) curr = curr->right;
else curr = curr->left;
}
if (t->data < parent->data)
parent->left = t;
else
parent->right = t;
}
}
void BinarySearchTree:remove(int d)
{
//Locate the element
int found = false;
if (isEmpty())
{
cout << " This Tree is empty! " << endl;
return;
}
tree_node* curr;
tree_node* parent = NULL;
curr = root;
while (curr != NULL)
{
if (curr->data == d)
{
found = true
break;
}
else
{
parent = curr;
if (d>curr->data) curr = curr->right;
else curr = curr->left;
}
}
if (!found)
{
cout << " Data found! " << endl;
return;
}
// 3 cases :
// 1. We're removing a leaf node
// 2. We're removing a node with a single child
// 3. we're removing a node with 2 children
// Node with single child
if ((curr->left == NULL & curr->right != NULL) || (curr->left != NULL
&& curr->right == NULL))
{
if (curr->left = NULL && curr->right != NULL)
{
if (parent->left == curr)
{
parent->left = curr->right;
delete curr;
}
else
{
parent->right = curr->right;
delete cur;
}
}
else // left child present, no right child
{
if (parent->left == curr)
{
parent->left = curr->left;
delete curr;
}
else
{
parent->right = curr->left;
delete curr
}
}
return;
}
//We're looking at a leaf node
if (curr->left == NULL && curr->right == NULL)
{
if (parent->left == curr) parent->left = NULL;}
else parent->right = NULL;
delete curr;
return;
}
//Node with 2 children
// replace node with smallest value in right subtree
if (curr->left != NULL && curr->right != NULL)
{
tree_node* chkr;
ckhr = curr->right;
if ((chkr->left == NULL) && (chkr->right == NULL))
{
curr = chkr;
delete chkr;
curr->right = NULL;
}
else // right child has children
{
//if the node's right child has a left child
// Move all the way down left to locate smallest element
if (curr->right)->left != NULL)
{
tree_node* lcurr;
tree_node* lcurrp;
lcurrp = curr->right;
lcurr = (curr->right)->left;
while (lcurr->left != NULL)
{
lcurrp = lcurr
lcurr = lcurr->left;
}
curr->data = lcurr->data;
delete lcurr;
lcurrp->left = NULL;
}
else
{
tree_node* tmp;
tmp = curr->right;
curr->data = tmp->data
curr->right = tmp->right;
delete tmp;
}
}
return;
}
}
void BinarySearchTree::print_inorder()
{
inorder(root);;
}
void BinarySearchTree::inorder(tree_node* p)
{
if (p != NULL)
{
if (p->left) inorder(p->left);
cout << " " << p->data << " ";
if (p->right) inorder(p->right);;
}
else return;
}
void BinarySearchTree::print_preorder()
{
preorder(rooot);
}
void BinarySearchTree::preorder(tree_node* p)
{
if (p != NULL)
{
cout << " " << p->data << " ";
if (p->left) {} preorder(p->left);
if (p->right) preorder(p->right);
}
else return;
}
void BinarySearchTree::print_postorder()
{
postorder(root);
}
void BinarySearchTree::postorder(tree_node* p)
{
if (p = NULL)
{
if (p->left) postorder(p->left);
if (p->right) postorder(p->right);
cout << " " << p->data << " ";
}
else return;
}
int main()
{
BinarySearchTree b;
int ch, tmp, tmp1;
while (1)
{
cout << endl << endl;
cout << " Binary Search Tree Operations " << endl;
cout << " ----------------------------- " << endl;
cout << " 1. Insertion/Creation " << endl;
cout << " 2. In-Order Traversal " << endl;
cout << " 3. Pre-Order Traversal " << endl;
cout << " 4. Post-Order Traversal " << endl;
cout << " 5. Removal " << endl;
cout << " 6. Exit " << endl;
cout << " Enter your choice : ";
cin >> ch;
switch (ch)
{
case 1: cout << " Enter Number to be inserted : ";
cin >> tmp;
b.inssert(tmp);
break;
case 2: cout << endl;
cout << " In-Order Traversal " << endl;
cout << " -------------------" << endl;
b.print_inorder();
break;
case 3: cout << endl;
cout << " Pre-Order Traversal " << endl;
cout << " -------------------" << endl;
b.print_preorder();
break;
case 4: cout << endl;
cout << " Post-Order Traversal " << endl;
cout << " --------------------" << endl;
b.print_postorder();
break;
case 5: cout << " Enter data to be deleted : ";
cin >> tmp1;
b.remove(ch);
break;
case 6: system("pause");
return 0;
break;
}
}
}