-
Notifications
You must be signed in to change notification settings - Fork 0
/
costFunctionReg.m
38 lines (28 loc) · 1.19 KB
/
costFunctionReg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
h = X*theta;
predi = sigmoid(h);
for k = 2:size(theta),
thetaSq = theta.^2;
endfor
reg = ((lambda/2)*sum(thetaSq));
J = (1/m)*((sum((-y.*log(predi))-((1-y).*log(1-predi))))+reg);
grad(1) = (1/m)*sum(predi-y);
for i= 2:size(theta),
grad(i) = (1/m)*((sum((predi-y).*X(:,i)))+(lambda*theta(i)));
endfor
% =============================================================
end