-
Notifications
You must be signed in to change notification settings - Fork 1
/
L3Q4_newton.m
87 lines (76 loc) · 2.28 KB
/
L3Q4_newton.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
%% Newton Algorithm Implementation
clc;
close all;
clear all;
% Learning rate
mi = 1e-1;
% Filter order
order = 2;
% Number of samples
Samples = 1000;
% Defining the mse error and filter coeficients vectors.
error = zeros(Samples,1);
weights = zeros(order, Samples);
%Wiener Solution
wiener = [0.35;-0.15];
% Defining the energy of the noise vector.
SNR_dB = inf;
SNR_li = 10^(SNR_dB/10);
variance_noise = 1/SNR_li;
noise = sqrt(variance_noise).*randn(Samples,1);
% Generating the original signal.
signal_d = randn(Samples,1);
% Convolving the channel and the signal.
Hz = [1 1.6];
signal_x = filter(Hz,1,signal_d);
% Generating the noisy received signal.
signal_x = signal_x + noise;
% Defining the autocorrelation matrix and the cross-correlation vector.
Rx = [3.56, 1.60; 1.60, 3.56;];
p = [1; 0;];
% Obtaining the optimal wiener solution.
wopt = inv(Rx)*p;
% To prevent the missmatch between the filtered signal and the desired
% signal. After some hours of debug I found out that the filtered signal
% was a shifted version of the desired signal.
signal_d = signal_d(order:end,1);
for ss = 1:(Samples - order - 1)
% Error between the desired signal and the filtered signal.
error(ss,1) = signal_d(ss) - weights(:,ss)'*signal_x(ss:ss+order-1);
% Recursive expression.
weights(:,ss+1) = weights(:,ss) - mi*(weights(:,ss) - wopt);
end
% MSE Curve
figure
semilogy(1:Samples, error.^2,'-','color', [0.3010 0.7450 0.9330], "linewidth", 1, "markersize", 8);
title('Newton Algorithm Behavior');
xlabel('Iterations');
ylabel('MSE');
grid on;
saveas(gcf,'newton_mse.png')
% Contour
figure
[W0, W1] = meshgrid (-1:0.01:1,-1:0.01:1);
w0 = reshape(W0,[],1);
w1 = reshape(W1,[],1);
[aux,~] = size(w0);
for i = 1:aux
w = [w0(i); w1(i)];
% We are considering that the desired signal has unitary variance.
% This is the expression for the MSE surface of the wiener solution.
Z(i) = 1 - 2*w.'*p + w.'*Rx*w;
end
Z = reshape(Z,size(W0));
contour(W0,W1,Z);
colormap('gray')
hold on;
for ss = 1:(Samples - order)
plot(weights(1,ss),weights(2,ss),".-",'color', [0.3010 0.7450 0.9330],"markersize", 8);
end
plot(wiener(1,1),wiener(2,1),"x",'color', [0.4660 0.6740 0.1880],"markersize", 6);
hold off;
title('Newton Algorithm Contour');
xlabel('W_1');
ylabel('W_0');
grid on;
saveas(gcf,'newton_contour.png')